GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-I &II

Course Title: Basics of Information and Communication Technology (ICT) (Course Code: 4300010)

Diploma programme in which this course is offered	Semester in which offered
Electronics & Communication Engineering, Electrical	First & Second
Engineering, Civil Engineering, Bio-Medical Engineering	First & Second

1. RATIONALE

In this era of the 21st century, information and communication technology (ICT) is used in every walk of life. Today, the potential of ICT is extensively used in scientific, business, industrial and educational areas. This course envisages developing basic skill sets in the use of Information and Communication Technology. It will provide the student hands-on experience on different application software used for office automation and improve day-to-day problem-solving skills using online resources for creating business documents, data analysis, and graphical representations. It will also enable the student to use Internet services for different communication.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching learning experiences.

• Develop basic skills in ICT for creating professional documents, analyzing data, preparing multimedia presentations, and using internet services.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with the identified competency are to be developed in the student for the achievement of the following COs:

- a) Classify various computer hardware, peripherals, and software for various purposes.
- b) Prepare professional documents, analyzing data, creating a presentation
- c) Use computer Networks for data and device sharing.
- d) Use Internet services for various applications.
- e) Create a webpage using HTML

4. TEACHING AND EXAMINATION SCHEME

Teachi	ing Scł	neme	Total Credits		Ex	amination S	Scheme	
(In	Hours	s)	(L+T+P/2)	Theory	y Marks	Practica	l Marks	Total
L	Т	Р	С	CA	ESE	СА	ESE	Marks
0	-	4	2	0	0	25*	25	50

(*): For this practical only course, 25 marks under the practical CA has two components i.e. the assessment of micro-project, which will be done out of 10 marks and the remaining 15 marks are for the assessment of practical. This is designed to facilitate attainment of COs holistically, as there is no theory ESE.

Legends: L-Lecture ; *T* – Tutorial/Teacher Guided Theory Practice; *P* - Practical; *C* – Credit, *CA* - Continuous Assessment; *ESE* - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the sub-components of the COs. *These PrOs need to be attained to achieve the COs.*

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. Required
1	Identify various parts of computer systems & peripherals.	Ι	02
2	Install Windows/linux Operating System.	I	04
3	Use various tools / utilities available in accessories of Windows/Linux OS.	Ι	04
4	Install printer, scanner, web cam, projector with the computer system.	I	02
5	Create a text document incorporating different formatting features, inserting images and tables as per given sample	II	02
6	Create a text document setting page layout features, backgrounds, shapes and smart arts as per given sample.	II	02
7	Use mail merge feature for sending invitation letter for expert lecture to 10 industries.	II	04
8	Create spreadsheet, analyse data using formulas and functions and present it through charts.	II	04
9	Create Pay bills/ Pay slips/ Electricity bills/student mark sheets using spreadsheet and take a print out.	II	04
10	Create a professional presentation incorporating various formatting features, inserting media and action buttons.	II	04
11	Prepare & test Ethernet LAN Cable for connecting computers & peripherals using PING command.		04
12	Connect two Computers/laptops and transfer/share data using Bluetooth/Wifi/cable.		04
13	Connect a Remote Desktop and share data using any remote login method.		02
14	Create an E-Mail account for sending and receiving mail.	IV	02
15	Create an online form for registration of students (for any activity) and download its response.	IV	04
16	Organize an online video meeting inviting 10 students.	IV	02
17	Develop HTML/Web page using various formatting tags as per given sample.	V	06
	Total		56

Note

- *i.* More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- ii. Care must be taken in assigning and assessing study report as it is a first year study report. Study report, data collection and analysis report must be assigned in a group. Teacher has to discuss about type of data (which and why) before group start their market survey.

The following are some **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

S. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Lab Records	05
2	Question answer or Writing steps exercise	20
3	Executing of exercise	40
4	Printout/ Result	20
5	Viva voice	15
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

These major equipment with broad specifications for the PrOs is a guide to procure them by the administrators, so uniformity for conducting practical can be maintained across the state.

S. No.	Equipment Name with Broad Specifications	PrO. No.
1	Computer with basic configuration and Internet Facility	All
2	Word Processing Software	All
3	Data Analysis Software	All
4	Presentation Software	All
5	Anti Virus Software	All
6	Window/Linux as operating system	All
7	Gujarati Indic	ALL

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above-mentioned COs and PrOs. More could be added to fulfil the development of this course competency.

- a) Follow safety practices.
- b) Practice good housekeeping.
- c) Demonstrate working as a leader/a team member.

- d) Maintain tools and equipment
- e) Follow ethical practices.

The ADOs are best developed through the laboratory/field-based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

The major underpinning theory is given below based on the higher level UOs of *Revised Bloom's taxonomy* that are formulated for development of the COs and competency. If required, more such UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at different levels)	
Unit – I	Ia. Explain functions of CPU ,ALU and memory	1.1 Computer system block diagram, Concept of Hardware and Software
Basics of	unit of a computer system	1.2 CPU, Control Unit, Arithmetic logic
Computer	Lb. Write the steps to install	Unit(ALU), Memory Unit, Power Unit
Systems	Windows and Linux operating	and Interfacing Ports.
	Systems in virtual box	 1.3 Input Output unit: Monitor, keyboard, External Hard disk, Mouse Printers, Plotters, Scanner, Projectors, Webcam, Mic, etc. 1.4 Operating system concepts, purpose and functions 1.5 Operations of Windows and Linux 1.5.1 Installation on PC / virtual box 1.5.2 Configuration 1.5.3 Files and Folder Operation 1.5.4 Basic Terminal Commands 1.5.5 Installation of various
Unit – II	2a. Write steps for text formatting,	Application Software Using Text Processing
Documentat ions	page Setup features, checking	 2.1 Basics of Font type, size, colour, Effects and other text formatting features 2.2 Page settings and margins including header and footer in word document. 2.3 Spelling and Grammatical checks 2.4 Table and its options, Inserting rows or columns, merging and splitting cells, Arithmetic Calculations in a Table.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at different levels)	
	worksheet and representing in	2.5 Working with pictures, Drawings
	the form of chart.	and WordArt
	2e. Write steps to setup page as	2.6 Mail merge
	per given layout and print an	Using Spreadsheet
	excel sheet	2.7 Introduction to data, Cell address,
	2f. Write steps for creating	Excel Data Types, formatting,
	presentation and apply basic	number, text and date Concept of
	formatting features using	hyperlink in Worksheet
	Spreadsheet.	2.8 Understanding formulas, Operators
	2g. Write steps to insert objects	and Common spreadsheet functions
	,clips, video, audio, with special	2.9 Types of graphics : Word art, auto
	effects and hyperlink in a	shapes ,Images ,charts
	multimedia presentation.	2.10 Concept of print area, margins,
	2h. Write steps for installing Indic	header, footer and other page
	IME Gujarati for creating a	setup options
	document.	2.11 Overview of Spreadsheets and
		how to create Spreadsheets
		Using Professional Presentation 2.12 Creating new Slides, Working with
		text boxes, fonts, tables, Layouts,
		themes, effects, background and
		Colours
		2.13 Selecting, deleting, moving,
		copying, resizing and arranging
		objects.
		2.14 Working with drawing tools,
		Applying shape or picture styles,
		Applying object borders, object
		fill, object effects, clip art
		collection and modifying clip art
		2.15 Embed a video, Link to a video,
		Size a video, Video playback
		options.
		2.16 Configuring a sound playback,
		Assigning sound to an object,
		Adding a digital music sound track,
		Transition effects and timings
		Using Gujarati IME
		2.17 Installation of Guajarati IME
		Software
		2.18 How to change language English to
		Gujarati
		2.19 Introduction about the Gujarati
		keyboards
		2.20 Introduction about the Gujarati

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at different levels)	
		IME and create Documents in
		Gujarati
Unit– III	3a. State the advantages of	3.1 Basics of Computer Networks
	Computer Network in your lab	3.1.1 Needs
Computer	3b. Create a layout of computer	3.1.2 Types
Networks	network topology in the lab	3.1.3 Topologies
and Data	3c. Analyse network	3.1.4 Components
Sharing	specifications(Devices,Cables &	3.2 Network Cables and Connectors
	Connectors) ,IP addressing	3.3 Overview of Network Devices
	scheme of Computer Network	3.4 IP Addresses Basics
	of your lab	3.5 Computer and Peripheral sharing in
	3d. Write steps of various remote	LAN
	login techniques	3.6 Remote Login
	3e. Write steps of various Data	3.6.1 Remote Desktop
	Transfer Techniques	3.6.2 Telnet
		3.6.3 FTP
		3.7 Data Transfer or sharing
		3.7.1 Using LAN
		3.7.2 Bluetooth
		3.7.3 Wi-Fi
		3.7.3 Modems
Unit– IV	4a. Use various internet	4.1 Internet
	applications.	4.2 Web Browser and Browsing Websites
Internet	4b. Create Online form for data	4.3 Search engines
Services	collection. 4c. Write various methods to	4.4 WWW and URL 4.5 E-mail
	secure your personal computer	4.5 L-IIIali 4.6 Video-Conferencing/online Meet
	secure your personal computer	4.7 Online Games
		4.8 E-Commerce
		4.9 Forums
		4.10 Online Data Management
		4.10.1 Online Quiz
		4.10.2 Online Forms
		4.10.3 Online Assignment.
		4.11 Cyber security
		4.11.1 Threats in Internet : Virus,
		Malware
		4.11.2 Preventing Tools : Antivirus,
		Firewall
Unit-V	5a. Write structure of a HTML	Working with HTML
	page	5.1 Structure of HTML Page
Designing of	5b. Write formatting tags as per	5.2 Inserting formatting tags for Text
Web pages,	the sample given page.	5.3 Font color, size, style, Alignment
Blogs and	5c. Write tags to insert a table in a	5.4 Margin with body tag, background
Websites	HTML page	and text colour

Unit	Unit Outcomes (UOs) (4 to 6 UOs at different levels)	Topics and Sub-topics
	5d. Write tags to insert image in a HTML page	 5.5 Ordered and unordered lists 5.6 Tables – basic structure, Using TD, TR, TH tags, use of basic elements in table : border, cell padding, cell spacing, width, caption, align, bg color 5.7 Images in web page: inserting and formatting of images using SRC,
		border, Vspace, Hspace, align, ALT, height, width and background in HTML page

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching Distribution of Theory Mark		ry Marks		
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
			No	t Applic	able	

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should perform following activities in group and prepare reports of about 5 pages for each activity. They should also collect/record physical evidences for their (student's) portfolio which may be useful for their placement interviews:

- a) Undertake micro-projects in team/individually.
- b) Encourage Students for creating and designing forms related to Departmental work.
- c) Encourage students to participate in the Microsoft-Office Specialist World Championship.
- d) Students are encouraged to register themselves in various MOOCs such as: Swayam, edx, Coursera, Udemy etc to further enhance their learning.
- e) Undertake a market survey of different Version like new and improved desktop apps, as well as mobile apps and a web-based alternative for both Windows and Mac users.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Guide student(s) in undertaking micro-projects.
- b) Diagnosing Essential Missed Learning concepts that will help for students to improve their performance.
- c) Guide Students to do Personalized learning so that students can understand the course material at his or her pace.
- d) Encourage students to do Group learning by sharing so that learning can be enhanced.

e) About 20% of the topics/sub-topics which are relatively simpler or descriptive in nature is to be given to the students for *self-learning*, but to be assessed using different assessment methods.

Guide students on addressing the issues on environment and sustainability using the knowledge of this course

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based (group of 3 to 5). However, in the fifth and sixth semesters, the number of students in the group should *not exceed three*.

The micro-project could be industry application based, internet-based, workshopbased, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The duration of the microproject should be about **14-16** (*fourteen to sixteen*) *student engagement hours* during the course. The students ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

MICRO PROJECT 1: Prepare the following text documents

1. Prepare your Resume as per the given sample

- 2. Draft a letter addressed to the principal getting permission to avail leave.
- 3. Develop a handout for Unit-1 of 10-pages with the table of content (INDEX).

MIICRO PROJECT 2: / Prepare the following spreadsheets.

1. Prepare a Timetable for your current semester.

2. Prepare a Mark sheet with grades for your final examination as per the given sample.

MICRO PROJECT 3: Prepare 15-20 slides presentation having Department and Institute Information.

MICRO PROJECT 4: Develop a webpage for your department as per the given sample.

13. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication with place, year and ISBN
1	Computer Course	R Taxali	Tata McGraw Hills. New Delhi.
2	World Wide Web design	Xavier	Tata McGraw Hills. New Delhi.
	with HTML		
3	INFORMATION	Dennis P. Curtin,	Tata McGraw Hills. New Delhi.
	TECHNOLOGY	Kim Foley, Kunal	
		Sen, Cathy Morin	
4	Fundamentals of	V. Rajaraman	PHI; 5th edition (1 December 2011)

S. No.	Title of Book	Author	Publication with place, year and ISBN
	Computers		
5	Data communication and	Behrouz A	Tata McGraw Hills. New Delhi.
	networking	Forouzan	

14. SOFTWARE/LEARNING WEBSITES

- a) <u>www.tutorialspoint.com</u>
- b) <u>www.wix.com</u>
- c) <u>www.blogger.com</u>
- d) <u>www.forms.google.com</u>

15. PO-COMPETENCY-CO MAPPING

Semester-I	Basi	ics of Infor			ication Techn	ology (IC	CT)
			(Cour	rse Code: 43 POs	00010)		
				105			
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge	PO 2 Problem Analysis	PO 3 Design/ develop- ment of solutions	PO 4 Engineering Tools, Experimen- tation &Testing	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Manage- ment	PO 7 Life-long learning
<u>Competency</u>							
Use Fundamentals of Computer in various engineering applications							
Course Outcomes co a) Classify various computer hardware, peripherals and software for various purposes	3	3	2	3	2	2	2
CO b) Prepare professional documents, analyzing data, creating presentation	2	1	2	1	-	2	1
CO c) Use computer Networks for data and device sharing.	3	2	2	3	1	2	3
CO d) Use Internet	3	2	2	2	1	2	3

Semester-I	Basi	Basics of Information and Communication Technology (ICT) (Course Code: 4300010) POs					
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge	PO 2 Problem Analysis	PO 3 Design/ develop- ment of solutions	PO 4 Engineering Tools, Experimen- tation &Testing	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Manage- ment	PO 7 Life-long learning
services for various applications.							
CO e) Create webpage using HTML.	3	2	2	1	1	2	3

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No.	Name and Designation	Institute	Contact No.	Email
1	Mr. N. M. Rindani	AVPTI, Rajkot	9898533198	nmrindani@gmail.com
2	Mr. D. M. Modi	G.P.Ahmedabad	9429613765	dhavalmodi765@gmail.com
3	Mr. J. S. Patel	G.P.Palanpur	9979258538	jay.me85@gmail.com
4	Mr. M. R. Panchal	G.G.P., Ahmedabad	9723340568	panchalmihir031@gmail.com

NITTTR Resource Persons

S. No.	Name and Designation	Department	Contact No.	Email
1	Dr. M.A.Rizvi	Department of	0755-2661600	marizvi@nitttrbpl.ac.in
	Associate Professor	Computer Science		
		Engineering		
		Education		
2	Dr. K.J.Mathai	Department of	0755-2661600	kjmathai@nitttrbpl.ac.in
	Associate Professor	Media Research		
		and Development		
		Education		

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021)

ran semester

Course Title: **Sports and Yoga** (Course Code: 4300015)

Diploma programme in which this course is offered	Semester in which offered
Civil, Environment, Automobile, Fabrication, Marine,	
Mechanical, Electrical, Electronics and Communication,	
Metallurgy, Plastics, Bio Medical, Instrumentation and	First
Control, Power Electronics, Computer, Information	First
Technology, CACDDM, Ceramics, Printing, Textile Design,	
Textile Manufacturing, Textile Processing	
Architectural Assistantship, Mining, Chemical, Mechatronics	Second

1. RATIONALE

Physical activity is vital to the holistic development of students, fostering their physical, social and emotional health. Sports and Yoga are essential part of our life for good health and peace of mind. Yoga is considered itself as a sport which plays through your own physical ability. Yoga provides you all the benefits that you are willing to have from generic sports like badminton, football, cricket, etc. Yoga is the application of physical postures, control of breath, purification and relaxation of mind / body and spiritual principles aimed at bringing greater unity and balance to the mind and body. The use of breathing techniques known as *Pranayama* enables a person to focus on breath and helps to calm and still the mind and cultivate concentration ability. *Pranayama* can also help to energise and revitalize the body.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Apply sports and yoga activities to keep the body physically and mentally fit.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with the identified competency are to be developed in the student for the following Course Outcomes (COs) achievement:

- a) Practice physical activities and yoga for strength, flexibility and relaxation.
- b) Use techniques for increasing concentration and decreasing anxiety for stronger academic performance.
- c) Perform yoga exercises in various combination and forms.
- d) Improve personal fitness through participation in sports and yoga activities.
- e) Follow sound nutritional practices for maintaining good health and physical performance.

Teach	ing Sc	heme	Total Credits					
(Ir	n Hour	s)	(L+T+P/2)	Theory Marks Practical Marks			Total	
L	Т	Р	С	CA	ESE	СА	ESE	Marks
0	0	2	0	0	0	50	0	50

4. TEACHING AND EXAMINATION SCHEME

This is designed to facilitate attainment of COs holistically, as there is no examination.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the sub-components of the COs. Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
1.	Perform following Yoga Asanas under the guidance of yoga		
	trainer :-		
	 Surya Namaskar (Sun Salutation) 		
	 Tadasana (Mountain pose) 		
	 Vrikshasana (Tree pose) 		
	 Vajrasan (Hand under foot pose) 		
	 Pada-hastasana (Hand under foot pose) 		
	 Ushtrasana (Camel pose) 		12*
	 Dhanurashana.(Bow Pose) 		12
	 Bhjangasana (Snake pose) 		
	 Halasana (Plough pose) 		
	 Shavasana/Yoga Nidra 		
	 Bhastrikai Pranayam 		
	 Kapalbhati Pranayam 		
	 Anulom Vilom Pranayam 		
	Bhramari Pranayam		
	Participate in any sports activities of your choice :	IV	14
	 Indoor sports/games (Badminton, Chess, Carrom, 		
2.	Table Tennis)		
	 Outdoor sports/games (Cricket, Kabaddi, , Volley ball, 		
	Basketball, Football, Hockey)		
3.	Prepare report on any sports events including associated	IV	02*
<u> </u>	rules, playground specification, rules for judgement, etc.)		
	Total		28

<u>Note</u>

i. More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.

ii. The following are some sample 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed Practical Exercises of this course required which are embedded in the COs and ultimately the competency.

S. No.	Sample Performance Indicators for the PrOs	Weightage in %
	-Not applicable-	Nil

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

The major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practicals in all institutions across the state.

S. No.	Equipment Name with Broad Specifications	PrO. No.
1	Yoga Mats/ Blankets	
	Straps	
	Blocks	
	Bolsters	
	Chairs	
	Meditation cushions	
	Eye pillows (tissues or washable cloth to cover them)	
	Mat cleaning wipes	
	Strong floorings	1
	Temperature control, fans, portable heaters (if needed)	
	Chime, bells, or gong (for bringing people out of corpse pose, or	
	silent meditation)	
	Essential oil diffuser	
	Yoga CD's	
	CD player	
	Lighting system that allows for dimming	
	Effective sound system	
	Salt lamp – they purify air and look lovely	
	Sandbags	
2	Sports and games accessories as per the decision of college.	
		2

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above-mentioned COs and PrOs. More could be added to fulfill the development of this course competency.

- a) Follow safe practices.
- b) Practice good housekeeping.
- c) Demonstrate working as a leader/a team member.
- d) Maintain tools/accessories/ equipment.
- e) Follow ethical practices.

The ADOs are best developed through the laboratory/field-based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

The major underpinning theory is given below based on the higher level UOs of *Revised Bloom's taxonomy* that are formulated for development of the COs and competency. If required, more such UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at different levels)	
Unit – I	1a. Explain importance of	1.1 Aims & Objectives of Physical
	physical education.	Education
Introduction	1b. Describe importance of	1.2 Changing trends in Physical Education
to Physical	Physical Fitness &	1.3 Meaning & Importance of Physical
fitness	Wellness	Fitness & Wellness
	1c. Explain the components	1.4 Components of Physical fitness
	of physical fitness.	1.5 Components of health related fitness
	1d. Demonstrate healthy life	1.6 Components of wellness
	style.	1.7 Preventing health threats through
	1e. Prevent health threats by	lifestyle change
	changing life style.	1.8 Concept of positive lifestyle
Unit – II	2a. Explain importance of	2.1 Anatomy, physiology and its
	anatomy and physiology.	importance.
	2b. Describe effects of	2.2 Effect of exercise on various body
of Anatomy &	exercise in various body	system i.e. circulatory system,
Physiology in	systems.	respiratory system, neuro- muscular
sports & yoga		system
	correct posture.	2.3 Concept and advantages of correct
	2e. Explain corrective	posture.
	measures for posture	2.4 Posture deformities and corrective
11-24 111	deformities.	measures.
Unit– III	3.1 Explain importance of	3.1 Meaning & Importance of Yoga
Voga 9	yoga. 3.2 Perform various	Asanas, Pranayama & Meditation
Yoga &		3.2 Yoga & related Asanas - Sukhasana,
Pranayama	pranayama for increasing concentration.	Tadasana, Padmasana & Shashankasana
	3.3 Use meditation and other	3.3 Relaxation techniques for improving
	relaxation techniques for	concentration - Yog-Nidra
	improving concentration.	

Unit– IV	4.1 Describe various warming 4.1 W	Narming up and limbering down
	exercises. et	exercises
Sports/	4.2 Select any game/sports of 4.2 T	ournaments- Knock out, League/
games	your choice. R	Round Robin & combination
	4.3 Explain latest rules of any 4.3 F	ollowing sub topics related to any one
	game/sports. G	Game/Sport of choice of student out
	4.4 Describe specifications of o	of: Badminton, Chess, Carrom, Table
	play fields and related T	ennis, Cricket, Kabaddi, , Volley ball,
	sports equipment. B	Basketball, Football, Hockey, etc.
	4.4 H	listory of the Game/Sport.
	4.5 L	atest General Rules of the
	G	Game/Sport.
	4.6 S	pecifications of Play Fields and
	R	Related Sports Equipment.
	4.7 E	ffect of anxiety & fear on sports
	р	performance.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching/ Distribution of Theory Marks				y Marks
No.		Practical	R	U	Α	Total
		Hours	Level	Level	Level	Marks
Ι	Introduction to Physical fitness					
П	Fundamentals of Anatomy &					
	Physiology in sports & yoga	- Not Applicable -				
Ш	Yoga & Pranayama					
IV	Sports/games					
	Total					

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy)

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated **co-curricular** activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should perform following activities in group and prepare reports of about 5 pages for each activity. They should also collect/record physical evidences for their (student's) portfolio which may be useful for their placement interviews:

- a) Prepare a list of specifications for various tools/equipment/machines used in gymnasium/indoor sports complex.
- b) Undertake a market survey of local dealers for procurement of sports items/ equipment/machines.
- c) Visit the sports shop and collect all relevant information about any sport item and submit the detailed report.
- d) Download video clips showing correct practices for yogasanas, pranayam and any sports/games.
- e) Prepare a chart showing different types of yogasanas.
- f) Prepare a chart showing different types of pranayams.

g) Prepare a chart showing the field details of any sports/games.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- c) With respect to *section No.10*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Arrange visit to nearby yoga centre and sports complex and use of videos/animations for understanding various steps , processes related to the activities .

12. SUGGESTED MICRO-PROJECTS

- Not Applicable -

S.	Title of Book	Author	Publication with place, year
No.			and ISBN
1	Modern Trends and Physical	Ajmer Singh	Kalyani Publication, New Delhi
	Education class 11 & class 12		ISBN : 9789327264319
2	Light on Yoga	B.K.S.	Thomson's Publication, New Delhi
		lyengar	ISBN: 8172235011
3	Health and Physical Education	V.K.Sharma	NCERT Books; Class11,12
			Saraswati House Publication,
			New Delhi
4.	Yoga and Stress Management	Acharya	Fingerprint Publishing
		Yatendra	ISBN: 938905303X
5.	Patanjali Yoga Sutras	Swami	Fingerprint Publishing
		Vivekanand	ISBN: 9389567351
6.	Pranayam Rahasya	Ramdev	Patanjali-Divya
			Prakashan, Haridwar
			ISBN: 978-8189235017
7.	Yoga its Philosophy & Practice	Ramdev	Divya Prakashan, Haridwar

13. SUGGESTED LEARNING RESOURCES

14. SOFTWARE/LEARNING WEBSITES

- https://youtu.be/dAqQqmaI9vY
- https://youtu.be/c8hjhRqIwHE
- https://youtu.be/MrR04m1zoJ8
- https://youtu.be/P-jwGj7YqNM

- https://youtu.be/3p4r_ad2Y7g
- https://youtu.be/mndOIVCwFss
- https://youtu.be/J68MR3dBzto

15. PO-COMPETENCY-CO MAPPING

Semester-I & II	Sports & Yoga (Course Code: 4300015)						
	POs						
Competency	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
& Course Outcomes	Basic &	Problem	Design/	Engineering	Engineering	Project	Life-long
	Discipline	Analysis	develop-	Tools,	practices for	Manage-	learning
	specific		ment of	Experimen-	society, sustain-	ment	
	knowledge		solutions	tation	ability & environ-		
Commentanta	Anak			&Testing	<mark>ment</mark>	ما بيد ميد مالي	C:+
<u>Competency</u>	Арріу	sports and	yoga activit	les to keep the	body physically an	d mentally	rit.
Course Outcomes CO a) Practice Physical activities and							
yoga for strength, flexibility,	2	-	-	-	1	-	2
and relaxation.							
CO b) Use techniques for increasing							
concentration and decreasing			-				
anxiety for stronger academic	3	-		-	1	-	2
performance.							
CO c) Perform yoga exercises in							
various combination and	2	-	-	-	1	-	2
forms.							
CO d) Improve personal fitness			_				
through participation in sports	2	-		-	1	-	2
and yoga activities.							
CO e) Follow sound nutritional							
practices for maintaining good			-		_		
health and physical	3	-		-	1	-	2
performance.							

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No.	Name and Designation	Institute	Contact No.	Email
1.				
2.				
3.				

NITTTR Resource Persons

S. No.	Name and Designation	Department	Contact No.	Email
1.	Prof. M.C.Paliwal, Associate Professor	Civil Engg. Education	9407271980	mcpaliwal@nitttrbpl.ac.in
2.	Dr. K.K. Jain, Professor	Mech. Engg. Education	9425017472	kkjain@nitttrbpl.ac.in

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) I – Semester

Course Title: Environment and Sustainability (Course Code: 4300003)

(664136 6646. 4366663)	
Diploma programme in which this course is offered	Semester in which offered
Chemical, Mechatronics, Computer	First
Civil, Environment, Mining, Architectural Assistantship,	
Mechanical, Automobile, Marine, Metallurgy,	
Fabrication, Electrical, Electronics and Communication,	
Instrumentation and Control, Bio Medical, Power	Second
Electronics, IT, Textile Manufacturing, Textile	
Processing, Textile Design, Printing, Plastics, Ceramics,	
CACDDM	

1. RATIONALE

For a country to progress, sustainable development is one of the key factors. Environment conservation and hazard management is of much importance to every citizen of India. Considerable amount of energy is being wasted. Energy saved is energy produced. Environmental pollution is on the rise due to rampant industrial mismanagement and indiscipline. Renewable energy is one of the answers to the energy crisis and also to reduce environmental pollution. Therefore this course has been designed to develop a general awareness of these and related issues so that the every student will start acting as a responsible citizen to make the country and the world a better place to live in.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Adopt the sustainable practices to resolve the environment related issues.

3. COURSE OUTCOMES (Cos)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

- a) Adopt relevant ecofriendly product in the given situation to protect ecosystem
- b) use relevant method of pollution reduction in the given situation
- c) Use of renewable resources of energy for sustainable development
- d) Use the relevant techniques in given context to reduce impact due to climate change
 Use relevant laws and policies for developing the sustainable environmental development

4. TEACHING AND EXAMINATION SCHEME

Teachi	ing Scł	neme	Total Credits		Exa	amination S	Scheme	
(In	Hours	s)	(L+T/2+P/2)	Theory	y Marks	Practica	l Marks	Total
L	Т	Р	C	CA	ESE	СА	ESE	Marks
3	0	0	3	30*	70	0	0	100

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the microproject to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES – Not Applicable

The following practical outcomes (PrOs) that are the sub-components of the COs. Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
	Total		44

<u>Note</u>

- *i.* More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- ii. The following are some **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency..

S. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Prepare of experimental setup	20
2	Operate the equipment setup or circuit	20
3	Follow safe practices measures	10
4	Record observations correctly	20
5	Interpret the result and conclude	30
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED – (Not Applicable)

These major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practicals in all institutions across the state.

S. No.	Equipment Name with Broad Specifications	PrO. No.
1		

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs and PrOs. More could be added to fulfil the development of this competency.

- a) Work as a leader/a team member.
- b) Follow ethical practices.

c) Practice environmental friendly methods and processes. (Environment related)

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

Only the major Underpinning Theory is formulated as higher level UOs of *Revised Bloom's taxonomy* in order development of the COs and competency is not missed out by the students and teachers. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at Application and	
	above level)	
Unit – I	1a. Explain the Structure with	1.1 Structure and components of
Ecosystem	components of the given	ecosystem
	Ecosystem	1.2 Types of Ecosystem, changes in
	1b. Explain Carbon, Nitrogen,	ecosystem
	Sulphur and phosphorus cycle	1.3 Various natural cycles like carbon,
	for the given ecosystem.	Nitrogen, Sulphur, Phosphorus
	1c. Justify the need to conserve the	1.4 Ecosystem conservation, carrying
	given Ecosystem on the w.r.t.	capacity of earth, Biomes in India,
	following points:carrying capacity of earth	(ESA) Ecologically sensitive areas 1.5 Bio diversity, its need and
	 Biomes, 	importance, International Union for
	 Ecologically sensitive area 	Conservation of Nature (IUCN) red
	1d. Explain the term biodiversity	list
	with its importance.	1.6 Concept of Ecological foot print,
	1e. Illustrate the importance of	virtual water, global ecological
	IUCN red list in environmental	overshoot
	engineering.	
	1f. Calculate global ecological	
	overshoot and virtual water	
	requirement of given natural	
	and man-made materials.	
Unit – II	2a. Explain the term, "pollution	2.1. Definition of pollution and pollutant
Pollution	and pollutant" in the given	2.2. Air pollution, classification and its
and its	situation.	sources
types	2b.Classify the air pollution on the	2.3. Air pollution control Equipments
	basis of its source	2.4. Water pollution, pollution
	2c. Use relevant equipment to	parameters like BOD,COD, pH, Total
	control given type of air pollution.	suspended solids, Turbidity, Total Solids
		2.5. Waste water treatment like primary,
	<u> </u>	2.5. Waste water treatment like prindly,

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at Application and	
	above level)	
	 2d. Explain relevant techniques of treatment to deal with given type of water pollution. 2e. Apply relevant techniques of Solid waste management based on its characteristics. 2f. Explain drawbacks of noise pollution in given situation. 	secondary and tertiary 2.6. Solid waste generation, sources and characteristics of Muncipal solid waste 2.7. Collection and disposal of Muncipal waste and Hazardous waste 2.8. Noise pollution- its effects, sources and measurement
	2g. Describe the environmental degradation due to Plastic waste and E- waste	2.9. Plastic waste and its hazard2.10. E waste and its hazard
Unit– III Renewable sources of energy	 3a. Justify the need of renewable energy adopting relevant energy policy in given situation. 3b. Explain the working of the solar thermal and PV systems with sketch in given situation. 3c. Justify the need of Advanced collector, Solar Pond, Solar water heater, Solar dryer in the given system. 3d. Emphasize the importance of wind power in India 3e. Select the relevant type of wind turbines in the given situation. 3f. Identify the relevant types of Sources of biomass energy. 3g. Draw the neat labelled diagram of simple biogas plant to explain its working. 3h. Identify the sources of the energy generation for the given situation. 	 3.1 Need of Renewable energy and energy policy 3.2 Solar energy: National solar mission 3.3 Features of solar thermal and PV systems Advanced collector, Solar Pond, Solar water heater, Solar dryer, polycrystalline, monocrystalline and thin film PV systems 3.4 Wind Energy: Growth of wind power in India 3.5 Types of wind turbines – Vertical axis wind turbines (VAWT) and horizontal axis wind turbines (HAWT) 3.6 Types of HAWTs – drag and lift types 3.7 Biomass: Overview of biomass as energy source. Thermal characteristics of biomass as fuel 3.8 Anaerobic digestion, Biogas production mechanism, utilization and storage. 3.9 New energy sources; Geothermal energy, Ocean energy sources, Tidal energy conversion, Hydrogen energy
Unit– IV Climate Change	 4a. Explain the term, "climate change" in context of environment. 4b. Describe the ill effects of Global warming due to various causes arising in the given situation. 4c. Explain the term, "greenhouse effect" with its causes. 4d. Relate the impact of Ozone depletion in climate change due to its causes. 	 4.2 Definition of climate change 4.3 Global warming-causes, effect, process 4.4 Greenhouse effect 4.5 Ozone depletion 4.6 Factors affecting climate change 4.7 Impact and mitigation 4.8 Climate change management

	(4 to 6 UOs at Application and	Topics and Sub-topics
	above level)	
	 Identify Factors affecting climate change in given locality. Justify the need of relevant Climate change management system to reduce the impact of climate change in the given context. 	
Environme ntal legislation and sustainable practices	relation with environment in given situation 5.b Relate the relevant provision of given act in given situation. 5.c Explain the necessity of the Environmental management system in given situation. 5.d Use the principle of Rain water harvesting in the given situation. 5.e Justify the necessity of Green building in India. 5.f. Adopt the relevant rating system for energy calculation for the given building. 5.f Explain the terms, "Cradle to	 5.1 Environmental policies in India 5.2 Air act, water act, Environment protection act, wild life protection act, Forest conservation act, Biodiversity act 5.3 Environmental management system: ISO 14000, definition and benefits 5.4 Rain water harvesting 5.5 Green building and rating system in India 5.6 Cradle to cradle concept and Life cycle analysis 5.7 Green label 5.8 Carbon credit system its advantages and disadvantages 5.9 Concept of SR(Refuse, Reduce, Reuse, Repurpose, Recycle) 5.10 Eco tourism: advantages and disadvantages

Note: The UOs need to be formulated at the 'Application Level' and above of Revised Bloom's Taxonomy' to accelerate the attainment of the COs and the competency.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory			Marks
No.		Hours	R Level	U Level	Α	Total Marks
1	Ecosystem	08	6	6	2	14
11	Pollution and its types	10	4	6	6	14
	Renewable sources of energy	10	4	6	6	16
IV	Climate Change	08	4	6	4	14

Unit	Unit Title	Teaching	Distribution of Theory Marks				
No.		Hours	R	U	Α	Total	
			Level	Level		Marks	
V	Environmental legislation and sustainable practices	06	5	3	2	10	
	Total	42	12	28	30	70	

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary slightly from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Prepare specification of some renewable sources of energy.
- b) Undertake micro-projects in teams
- c) Give seminar on any relevant topic.
- d) Undertake a market survey of different green materials.
- e) Prepare showcase portfolios.
- f) Prepare report on various issues related to environment and sustainable development
- g) Publish a research paper on themes related to environment and sustainable development.
- h) Compare the pollution (water, air and noise) data of various cities with standard values as laid by pollution control board.
- i) Undertake some small mini projects on various issues related to environment and sustainable development.
- j) Submit a report on visit to an energy park
- k) Prepare power point on clean and green technologies
- I) Submit a report on visit to garbage disposal system in your city/town.
- m) Submit a report on analysis of the life cycle of any one or two eco-friendly product/s.
- n) Calculate ecological footprint using various calculator available on web with a report recommending ways and means to reduce ecological footprint.
- o) Give seminar on relevant topic.
- p) Undertake micro-projects.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- *'L' in section No. 4* means different types of teaching methods that are to be employed by teachers to develop the outcomes.

- d) About 20% of the topics/sub-topics which are relatively simpler or descriptive in nature is to be given to the students for self-learning, but to be assessed using different assessment methods.
- e) With respect to section No.10, teachers need to ensure to create opportunities and provisions for co-curricular activities.
- f) Guide students on how to address issues on environment and sustainability
- g) Guide students for using data manuals.
- h) Guide students for using data manuals.
- i) Arrange visit to nearby industries and workshops for understanding various sources of pollution.
- j) Use video/animation films to explain various processes related to environment and sustainable development
- k) Use different instructional strategies in classroom teaching.
- Write the report on properties of various eco-friendly construction materials like Stone, aggregate of different sizes, timber, lime, bitumen, Bricks, tiles, precast concrete products, Water proofing material, Termite proofing material, Thermal insulating material, plaster of Paris, paints, distemper, and varnishes.
- m) Display various technical brochures of recent projects/themes related to environment and sustainable development
- n) Visit the Pollution control board office and its various projects to demonstrate the various practices adopted for control of Pollution

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be **individually** undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should **not exceed three.**

The micro-project could be industry application based, internet-based, workshop based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than **16** (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) **Natural cycles**: Build a Chart showing different natural cycles like Carbon, Nitrogen,Sulphur and phosphorus cycle.)
- b) Solar Energy: Build a model of Solar water heater/Solar cooker
- c) Wind energy: Build a model of wind mill
- d) **Best out of waste**: Build useful items from waste materials like used plastic bottles, discarded pens etc.

e) Compare the pollution (water, air and noise) data of various cities with standard values as laid by pollution control board.

- f) Surf different websites related environment and sustainable development, Pollution control.
- g) Prepare energy audit report of any residential building.
- h) Collect relevant information about the software used in pollution control.
- o) Visit to ongoing project and study various aspects related to environment and sustainable development

13. SUGGESTED LEARNING RESOURCES

<mark>S.</mark> No.	Title of Book	Author	Publication with place, year and ISBN
1	Renewable Energy Technologies: A Practical Guide for Beginners	Solanki, Chetan Singh	PHI Learning, New Delhi, 2010 Print Book ISBN: 9788120334342 eBook ISBN: 9789354437151
2	Ecology and Control of the Natural Environment	Izrael,Y.A.	Kluwer Academic Publisher eBook ISBN: 978-94-011-3390-6 Softcover ISBN: 978-94-010-5499-7
3	Green Technologies and Environmental Sustainability	Singh, Ritu, Kumar, Sanjeev	Springer International Publishing, 2017 eBook ISBN 978-3-319-50654-8
4	Environmental Noise Pollution and Its Control	G.R. Chhatwal, M. Satake, M.C. Mehra, Mohan Katyal, T. Katyal, T. Nagahiro	Anmol Publications, New Delhi ISBN: 8170411378 ISBN: 8170411378
5	Wind Power Plants and Project Development	Earnest, Joshua & Wizelius, Tore	PHI Learning, New Delhi, 2011 ISBN-10: 8120351274 ISBN-13: 978-8120351271
6	Renewable Energy Sources and Emerging Technologies	Kothari, D.P. Singal, K.C., Ranjan, Rakesh	PHI Learning, New Delhi, 2009 ISBN-13 - 978-8120344709
7	Environmental Studies	Anandita Basak	Pearson Publications ISBN 8131785688, 9788131785683 ISBN: 9788131721186, 8131721183
8	Environmental Science and Engineering	Aloka Debi	University Press ISBN: 9788173718113 ISBN-10: 8173716080 ISBN-13: 978-8173716089
9	Coping With Natural Hazards: Indian Context	K. S. Valadia	Orient Longman ISBN-10: 8125027351 ISBN-13: 978-8125027355
10	Introduction to Engineering and Environment	Edward S. Rubin	Mc Graw Hill Publications ISBN-10 : 0071181857 ISBN-13 : 978-0071181853

14. SOFTWARE/LEARNING WEBSITES

- a) www.nptel.iitm.ac.in
- b) www.khanacademy
- c) http://www1.eere.energy.gov/wind/wind_animation.html
- d) http://www.nrel.gov/learning/re_solar.html
- e) http://www.nrel.gov/learning/re_biomass.html
- f) http://www.mnre.gov.in/schemes/grid-connected/biomass-powercogen/
- g) <u>http://www.epa.gov/climatestudents/</u>
- h) <u>http://www.climatecentral.org</u>
- i) <u>http://www.envis.nic.in/</u>
- j) <u>https://www.overshootday.org/</u>
- k) <u>http://www.footprintcalculator.org/</u>
- I) <u>https://www.carbonfootprint.com/calculator.aspx</u>

15. PO-COMPETENCY-CO MAPPING

Semester II	En	vironr	nent a	and Susta	ainability (Course C	Code:)
		POs and PSOs							
Competency & Course Outcomes	Basic & Discipline	Proble m Analysi s	Design/ develop ment of solutio	Engineering Tools, Experiment ation &Testing	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Manageme nt	PO 7 Life-long learning	PSO 1 Environm ental planning & deisgn	PSO 2 Execution & Maintenan ce
Competency - Adopt the su	stainable	practi	ces to r	esolve the	environme	nt related	issues	_	
a. Adopt relevant ecofriendly product in the given situation to protect ecosystem	2	1	1	-	2	1	1	2	2
b. use relevant method of pollution reduction in the given situation	2	2	1	1	2	-	2	2	2
c. Use of renewable resources of energy for sustainable development	2	2	2	1	2	2	1	2	2
d. Use the relevant techniques in given context to reduce impact due to climate change	2	2	2	1	2	1	2	2	2
e. Use relevant laws and policies for developing the sustainable environmental development	2	2	2	1	1	1	1	2	2

Legend: '3' for high, '2' for medium, '1' for low or '2' for the relevant correlation of each competency, CO, with PO/ PSO

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. Io.	Name and Designation	Institute	Contact No.	Email
1	Dr. Jayesh Shah	Ass. Dean GTU, Pacific School of Engineering, Surat	9825436342	jayesh.shah.23021971 @gmail.com
2	Mrs. Jini Sunil	Shri K.J. Polytechnic, Bharuch	9601880636	jinivt@rediffmail.com

NITTTR Resource Persons

S. No	Name and Designation	Dept.	Contact No.	Email
1	Dr. V.D.Patil, Associate Professor, DCEEE	DCEEE	9422346736	vdpatil@nitttrbpl.ac.in
2	Prof. M.C.Paliwal, Associate Professor, DCEEE	DCEEE	9407271980	mcpaliwal@nitttrbpl.ac.in

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-II

Course Title: Civil Engineering Drawing

(Course Code: 4320601)

Diploma programme in which this course is offered	Semester in which offered
Civil	Second

1. RATIONALE

Engineering drawing is considered as a language of engineering communication. Basic and primary features of engineering drawing are being taught in course "Basic Engineering Drawing and Graphics (code 4300013)". For a Diploma holder of civil engineering, it became essential to interpret the civil engineering drawing and also to prepare the working drawing and/ or submission drawing as and when required. Therefore, this course has been designed in such a way that a diploma holder can easily produce detailed civil engineering drawing related to construction of single storeyed, double storeyed residential/ public/ any other simple civil engineering structures giving due respect to building regulation and bye-laws as per local authorities. So, that plan gets approval by local civic authorities.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competencies:

- Read and interpret the building construction drawings.
- Produce working and /or submission drawings for simple civil engineering structures with building services as per regulations and bye-laws considering green building aspects.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

- a) Interpret given civil engineering drawing- symbols, conventions, abbreviations and scale.
- b) Plan buildings as per principles of planning, building byelaws and regulation considering green building aspects.
- c) Develop working drawings for simple civil engineering (single and double storied) structures and conceptual plan for multi-storeyed building.
- d) Draw perspective view of given element/building plan.
- e) Propose appropriate building component and services as per its scope.

Teachi	ing Scł	neme	Total Credits	Examination Scheme				
(In	Hours	s)	(L+T/2+P/2)	Theory Marks Practical Marks		Theory Marks		Total
L	Т	Ρ	С	CA*	ESE	СА	ESE	Marks
2	-	4	4	30	70	25	25	150

4. TEACHING AND EXAMINATION SCHEME

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the sub-components of the COs. Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

S. No.	Practical Outcomes (PrOs)	Unit No.		Approx. Hrs. required
1	Interpretation of building drawings approved by local authority.	I		02*
2	Draw various types of graphical symbols for materials, Doors and Windows, symbols for sanitary, water supply and electrical installations and write Abbreviations in sketch book.	I		02*
3	Study of building bye-laws act and national building code (NBC)	II		02*
4	Study of GRIHA and IGBC manual for green building.	II		02*
5	Draw the detailed plan, elevation, section, site plan and schedule of openings for an existing residential building by taking actual measurement. (Drawing Sheet-01)	III		08*
6	Draw details of foundation plan of at least two rooms building in sketch book.	III		04*
7	Draw working drawings for single storeyed residential building (bunglow) on 250sq.m plot with scale and show following detail: GF & FF plan with elevation, section and opening schedule. (Drawing Sheet-02)	III		16*
8	Prepare concept plan of any one other type of building considering local bye laws: high school building, Shopping centre, Hospital and Industrial building in sketch book.			08*
9	Develop perspective view of a complicated object/element using one point method. (Drawing Sheet-03)	IV	9-10 or	2
10	Develop perspective view of small objects such as-steps, pedestals using two point method. (Drawing Sheet-03)	IV	11	2
11	Develop perspective view of single room residential building with verandah & steps by any methods. (Drawing Sheet-03)	IV		04
12	Visit a residential building and observe the existing building service and Draw line plan for above services in sketch book.	V		04*
13	Design and draw the Plan, Elevation & section of a stair case from given data in sketch book.	V	Any One	04

S. No.	Practical Outcomes (PrOs)	Unit No.		Approx. Hrs. required
14	Draw parts of buildings such as stair cases, Weather sheds, Projections, columns, pier, slabs, footings etc. in sketch book.	V		04
			Total	56

<u>Note</u>

- *i.* More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- *ii. The following are some* **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency..

S. No.	Sample Performance Indicators for the PrOs	Weightage in %					
	For PrOs 2, 5-12, 14 & 15						
1	Neatness, Cleanness on drawing sheet	10					
2	Uniformity in Drawing and line work	10					
3	Creating given drawing	40					
4	Dimensioning the given drawing and writing text	20					
5	Answer the question	10					
6	Submission of drawing in time	10					
Total		100					

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practicals in all institutions across the state.

S. No.		Equipment Name with Broad Specifications	PrO. No.
1	•	Tape (10m, 20m, 30m Vinyl)	12
	•	Drawing board	5-12,14 &15
	•	Mini drafter/T- square/Parallel	5-12,14 &15

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs and PrOs. More could be added to fulfill the development of this competency.

- a) Work as a team member/ individual.
- b) Follow ethical practices.
- c) Follow safe practice on site.
- d) Practice of environmental friendly methods and processes.

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

Only the major Underpinning Theory is formulated as higher level UOs of *Revised Bloom's taxonomy* in order development of the COs and competency is not missed out by the students and teachers. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
Unit – I Introduction to Civil Engineering Drawing	 1a. Appreciate types of Drawings and its importance. 1b.Draw various types of Projections 1c. Use building drawing Symbols, Conventions and Abbreviations 1d.Apply various types of scales as per needs. 	 1.1 Types of drawing with appropriate scale &uses (index map, key plan, village map, site plan, layout plan.) 1.2 Types of Projection adopted in Building Drawing. 1.3 Scales for various types of Drawings. 1.4 Working drawing, large scale drawing, enlarge scale drawing. 1.5 Symbols, Conventions and Abbreviations for Electrical fittings, water supply, sanitary fittings, material for construction etc.
Unit – II Principles of Planning, Building byelaws and Regulation	 2a. Apply the Principles of Planning & Bye-laws for residential and other public buildings. 2b. Apply green building aspects. 	 2.1 Principles of planning for residential building in detail such as- Room dimension, area, height, privacy, roominess factor, orientation, grouping, drainage, aspect, prospect, economy. 2.2 Building bye laws of local body for residential building (show local authority publication) plot area, built up area, carpet area, FSI, size of rooms, margins, height, passages, ventilation, circulation and others 2.3 Color code for alteration and addition in existing building. 2.4 Approval procedure with respect to bye-laws. 2.5 Concept and components of green building. 2.6 Evaluation system of various authorities (GRIHA,IGBC)
Unit– III Planning of	3a. Develop concept plan of buildings.	

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
Buildings.	3b. Prepare detail drawings for single and two storeyed residential building and public building.	 buildings. 3.2 Concept plan of public buildings such as hospital, school, shopping center, office building and industrial unit. 3.3 Given situation & Plot area: preparation of detailed drawing of a single storeyed and double storeyed residential building with detail of Line plan, Detailed Plan, Ground floor Plan, First floor plan, Elevation and Sections.
Unit– IV Perspective Drawings and modelling.	4a. Generate perspective view of simple building by different methods.4b. Develop building models.	 4.1 Introduction of perspective view and other related terms. 4.2 Perspective view of single room residential building and simple public buildings. 4.3 Elements of perspective drawing. 4.4 Model preparation of simple buildings.
Unit– V Construction al details drawing of buildings	5a. Draw details of components of buildings.5b. Provide scope and provisions for building components and services.	 5.1 Drawings of Parts of buildings such as staircases, chajjas, projections, columns, pier, slabs, footings etc. 5.2 provisions in drawings for building services such as air conditioning, plumbing, water supply and firefighting, elevators, lifts and escalators etc. 5.3 Show building service like water supply, sanitary, electrification on line plan.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Marks				
No.	D.		R	U	Α	Total	
			Level	Level		Marks	
I	Introduction to Civil Engineering Drawing	3	04	02	00	06	
II	Principles of Planning, Building byelaws and Regulation	7	02	05	05	12	
Ш	Planning of Buildings	10	04	08	14	26	
IV	Perspective Drawings and modelling	6	04	04	08	16	
V	Constructional details drawing of Buildings	2	02	04	04	10	
	Total	28	16	23	31	70	

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy)

Note: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary slightly from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated **co-curricular** activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Visit a construction site and collect working drawings to study the project.
- b) Draw proportionate line sketch (front elevation of any two storeyed residential building without using any drawing instruments.
- c) Visit an urban development authority office and obtain a Development control regulations (bye-laws) of local Body.
- d) Visit a public building like school, hospital, shopping centre etc, to have knowhow about essential requirements.
- e) Undertake micro-project.
- f) Give seminar on any relevant topic.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No. 4* means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.10*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on environment and sustainability

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be *individually* undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should *not exceed three.*

The micro-project could be industry application based, internet-based, workshopbased, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than **16** (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) **Housing Colony**: Prepare a scaled layout plan of a housing colony within a plot of 3000 sq. mt to 8000 sq mt having the varaity of bunglows and/or tenements and/or raw houses considering bye-laws.
- b) **Primary health center:** Prepare a scaled detailed plan for Primary health center (minimum 01 doctor room,01 dressing room,01vaccination room, office room, waiting area, wash rooms)
- c) **Hostel Building:** Prepare the detailed plan for a hostel building (minimum 200 person)
- d) Secondary School: Prepare the detailed plan for a secondary school building.
- e) **Shopping mall:** Prepare the detailed plan for a shopping mall
- f) Library building: Prepare the detailed plan for a library building
- g) **Apartments:** Prepare the detailed plan for apartments.
- h) **Model:** Prepare a scaled model of a simple building using card board.
- i) Prepare a suggestive report on upgrading existing building into green building as per IGBC/GRIHA standards.

13. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication with place, year and ISBN
1	Civil engineering Drawing	V. B. Sikka	B. D. Kataria Sons, Ludhiana
2	Civil Engineering Drawing	Gurcharan singh, Subash chander	Standard Publishers Distributors, Delhi
3	Civil Engineering Drawing	R. S. Malek G. S. Meo	New Asian Delhi
4	Civil Engineering Drawing	B. H. Shukla	Atul Prakashan Ahmedabad
5	Building Bye laws	Urban Development Authority	Local Authority e.g. AUDA,GUDA,RUDA etc.
6	Understanding Construction Drawings	Mark W. Huth Delmar,	Cengage Publishers
7	National Building Code of India	Bureau of Indian Standards	Bureau of Indian Standards, Govt. Of India
8	I.S 962: 1989-CODE OF PRACTICE FOR ARCHITECTURAL AND BUILDING DRAWINGS	Bureau of Indian Standards	Bureau of Indian Standards, Govt. Of India

S. No.	Title of Book	Author	Publication with place, year and ISBN
9	Green Rating for Integrated Habitat Assessment (GRIHA) Manual	Ministry of New and Renewable Energy, GOI & The Energy and Resources Institute New Delhi	Ministry of New and Renewable Energy, Government of India and The Energy and Resources Institute New Delhi
10	A text book on Green Building	Guttila Yugantha Jaysinghe Shehani Sharadha Maheepala	LAP Lamberd Academic Publishing ISBN13-9786138389187
11	Green building Guidence :The ultimate guide for IGBC	Karthik Karuppu	Notion Press.com ISBN-13 978-1684667291

14. SOFTWARE/LEARNING WEBSITES

- a) www.nptel.iitm.ac.in
- b) Auto CAD, Zwcad, civil Architect, draw plus X5
- c) <u>www.Autodesk.com</u>,
- d) <u>www.drawingnow.com</u>
- e) <u>www.learn-to-draw.com</u>
- f) <u>www.igbc.in</u>
- g) www.grihaindia.org

15. PO-COMPETENCY-CO MAPPING

Semester II	Civil Engineering Drawing (Course Code:4320601)										
	POs and PSOs										
Competency & Course Outcomes	Discipline	Probl em Analy	Design/ develop ment of solution	Tools, Experiment	society,	PO 6 Project Manage ment	Life-	PSO 1	PSO 2	PSO 3 (If neede d)	
Competency				•	truction drawings.						
	ii. Produce working and /or submission drawings for simple civil engineering structures with building services as per regulations and bye-laws considering green building aspects.										
CO a) Interpret given civil engineering drawing- symbols, convections, abbreviations and types of scale.	3	2	-	-	-	-	2	-	-	-	
CO b) Plan buildings as per principles of planning, building byelaws and regulation considering green building aspects.	3	3	3	-	2	-	2	-	-	-	
CO c) Develop working drawings for simple civil engineering (single and double storied) structures and conceptual	3	2	2	-	1	-	2	-	-	-	

plan for multi-storeyed building.										
CO d) Draw perspective view of given element/ building plan.	3	1	1	-	-	-	-	-	-	-
CO e) Propose appropriate building component and services as per its scope.	3	2	1	-	-	-	1	-	-	-

Legend: '3' for high, '2' for medium, '1' for low or '-' for the relevant correlation of each competency, CO, with PO/ PSO

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No.	Name and Designation	Institute	Contact No.	Email
1	Dr.Mohammed Shakil Malek	F. D. (Mubin) Institute of Engineering and Technology, Bahiyal	079-25391112	shakil 250715@yahoo.co.in
2	Smt. Margee Milisia	Shri. K.J.Polytechnic, Bharuch	0264-2246402	margee.milisia@gmail.com
3	Shri Munaf Jagdu	Govt.Poly., Ahmedabad	079-26301285	mjagadu@gmail.com
4	Shri Darshan V Patel	Govt.Poly., Himatnagar	02772-229285	darshan.2228@gmail.com

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-III

Course Title: Summer Internship-I

(Course Code: 4330001)

Diploma programme in which this course is offered	Semester in which offered
All Branches of Diploma Engineering	Third

1. RATIONALE

Idea of Embedded Internships- AICTE has made 7-10 weeks summer internships mandatory in the new curriculum which will equip the students with practical understanding and training about industry practices in a suitable industry or organization. To make education holistic, sports, physical activities, values and ethics have been embedded in the curriculum.

We must agree that all Branches of Diploma Engineering are changing rapidly. New technologies are adding fast which effects can be seen in our society. Summer internship is a good option by which students to get flavor of such emerging technology and familiar with industry environment to identify scope and focus of their career development opportunities. Main objective of summer internship is hand-on practice to expose students for thinking about professional career by observing, understanding working mechanism of ongoing work of industry and to obtain various types of skills throughout internship program.

This two week mandatory internship is to equip the students with practical knowledge and provide them exposure to real time industrial environments. Further, in these internships, the option is provided to do internship in Government Agencies/ skill centers/ social sector/ Govt. initiated social schemes/ NGOs etc. The duration of internship will be two weeks. It will be after completion of 2^{nd} Semester and before the commencement of Semester 3^{rd} . Any options from following can be chosen by the students:

- 1. **Offline internship in industry** Student is supposed to produce joining letter for starting and relieving letter once the internship is over in case of Offline internship in any industry.
- 2. **Online internships** Student can select from any of approved /supported / recommended by the All India Council of Technical education for Internship (like Internshala/ NEAT/ Gujarat Knowledge Society Initiative etc.) or Approved by the state government or University approved
- 3. A Mini Project On some suitable topic related to respective branch. It can be small fabrication / experimental results/ simulations/ Application development / Design and / or Analysis of System(s) etc. depending on the branch of the student. Preferably a single student should carry out a mini-project.

2. COMPETENCY

The purpose of this course is to help the student to attain flavor of the following industry identified competency through summer internship experiences:

• Develop multiple types of skills such as planning, communication, collaboration, decision making / Problem solving and management skills along with selected technical knowledge.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with the identified competency are to be developed in the student for the achievement of the following COs:

- a) Learn and adopt the engineer's role and responsibilities with ethics.
- b) Get exposure to the industrial environment for professional activities.
- c) Get possible opportunities to learn, understand and sharpen the technical skills required for technical advancement.
- d) Develop managerial skills required for professional career.
- e) Attain skill for writing technical report and prepare poster for presentation.

4. TEACHING AND EXAMINATION SCHEME

Teach	ing Sc	heme	Total Credits		Examination Scheme				
(In Hou		:s)	(L+T+P/2)	Theory Marks Pra		Practical	Marks	Total	
L	Т	Р	С	CA	ESE	CA	ESE	Marks	
0	0	0	1	0	0	25	25	50	

- 1. **Offline internship in industry:** CA will be carried out based on submitted progress card by Industry resource person and ESE / Assessment will be carried out by institute resources person.
- 2. **Online internships:** CA will be carried out based on submitted certificate and ESE/ Assessment will be carried out by institute resources person.
- 3. A Mini Project: CA will be carried out based on project work by institute resources person.
- *Legends: L*-*Lecture; T Tutorial/Teacher Guided Theory Practice; P* -*Practical; C Credit, CA Continuous Assessment; ESE* -*End Semester Examination.*

List of Documents to be prepared for Submission:

- Detail report duly signed and approved by the internal/external mentor
- Presentation softcopy approved by the internal/external mentor
- Poster of summer internship activities approved by the internal/external mentor.

Sample forms for Registration and Evaluation of Summer Internship-I –SI-I are given below:

- 1) Both forms are mandatory to be filled at the commencement and completion of SI respectively.
- It is mandatory to file and map SI-I Registration and Evaluation with respective forms of SI-II (Later in Semester 5) so that students get enough exposure of industry / technology. (Mapping doesn't mean same industry/ company/ project-it can be independent/ different also.)
- 3) Mapping will be done to ease CA and ESE Evaluations.
- 4) A Seminar / Webinar can be arranged so that students coming from different industry / institute / project background can share experiences and learnings to their peers / all students of the same department.
- 5) Attached formats for Registration, Completion and Evaluation are suggestive. But, adhering to these formats is anticipated.

Summer Internship-I Registration Form

Note: Students needs to submit this registration form after finalizing mode of internship.

Student Details												
Enrollment Number												
Student Name												
6 1 5 1	N 1 1	NT 1	1									
Student Details	Mobile	Numt	ber :									
	Email	Addres	ss:									
Branch												
Code of the Institute	Name	of the	e Insti	tute								
Mentor Details (Institute)	Name:											
	Design	nation	:									
	Mobil	e No:										
	Email	Addre	ess:									
Industry Details	Name:											
	Address:											
	Email:											
	Phone	:										
	Websi	te:										
Mentor Details (Industry)	Name:											
	Design	nation	:									
	Mobil	e No:										
	Email	Addre	ess									
Mode of Internship Carriec Out	l Online	e / Off	line/ N	Mini P	roject							
Title of the Project/ Internship carried out												
Nature of Work Carried Out	Web I rest				on devo Analys), Exp	erimer	ntal
	Other	please	Spec	ify								

Student Signature

Faculty Signature

Summer Internship-I -	Suggested Letter for Completion
[Compar	ny or Institute letter head]
No:	Date
TO WHOM Se	O EVER IT MAY CONCERN
This is to certify that, Mr. /Mrs	
Enrollment No	Student of
Has successfully completed a two week In	nternship in the field of
From the date:	to date:
[90% Attendance is ma	andatory for completion of Internship]
During the period of his/her summer interfollowing different processes and were 1. . 2. . 3. . 4. . Mentor Signature	
Stamp	Stamp

Summer Internship-I -Evaluation Rubrics for Institute **Evaluation Rubrics (Institute)**

Enrollment No: _____

Branch:

Name of the Students:	
Date of Evaluation:	

Internal Evaluation – 25 Marks PA(I) (To be carried out by the mentor in consultation with Industry) Minimum Passing Marks: 13									
Parameter	Excellent	Good	Average	Not up the level of Satisfaction	Obtained Marks				
Mark range	4-5	3-4	2-3	Below 2	Warks				
Knowledge acquisition in specific domain. 5 marks									
Skill and attitude attainment in specific domain. 5 marks									
Feedback and suggestions given are incorporated? 5 marks									
Quality of the prepared report and poster. 5 marks									
Quality of the presentation. 5 marks									
		Tot	al Marks Obt	ained Out of 25 PA(I)					

Signature: ____

Signature: ______ Institute Resource Examiner Name: ______

Suggested Evaluation Rubrics for Industry

Evaluation Rubrics (Industry)

Enrollment No: _____

Branch:

Name of the Students: **Date of Evaluation:**

	External E	Evaluation – 2	25 Marks ESI	E(V)					
(To be carried out by the Industry Supervisor) Minimum Passing Marks: 13									
Parameter	Excellent	Good	Average	Not up the level of Satisfaction	Obtained Marks				
Mark range	4-5	3-4	2-3	Below 2					
Student regularity during the Internship period and proactive ness/responsiveness towards the given tasks (5 Marks) Work Plan, Execution and quality of work in forms of Outcome achieved (5 Marks) Engineering Tools and Techniques (5 Marks)									
Quality of poster design and presentation (5 Marks)									
Quality of the report and Skill (5 Marks)									
		Total I	Marks Obtain	ed Out of 25 ESE(V)					

Signature: ___

Industry resource/ Examiner Name: _____

Common Note:

- 1) For Summer Internship / Projects / Seminar etc. Evaluation is based on work done, quality of report, performance in viva-voce, presentation etc. The internal / external assessment is based on the student's performance in viva-voce /work record respectively.
- 2) In case Industry Supervisor is not available / Institute Mentor/ Faculty can fill up both.

5. AFFECTIVE DOMAIN OUTCOMES

The following affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs. More could be added to fulfill the development of this course competency.

- a) Work as a leader/a team member as role of Engineer.
- b) Practice environmentally friendly methods and processes.
- c) Follow safety precautions and ethical practices.

6. SUGGESTED STUDENT ACTIVITIES

- Following are the suggested student-related curricular, **co-curricular** activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should perform following activities and prepare reports and give presentation in front of students and faculty members. They should also collect/record physical evidences for their (student's) portfolio which may be useful for their placement interviews:
- a) Perform various tasks given by industry resources person during offline internship.
- b) Perform various tasks given during online internship.
- c) Perform various task required to complete mini project work under guidance of faculty member.
- d) Summer Internship program Interns are required to give a presentation before review committee consisting of a group of academic staff members.
- e) The review committee gives feedback and suggests possible improvements in the work.
- f) At the end of the program all the Summer Internship program Interns make a poster presentation of the work carried out. The poster presentation is open to the public. It is also evaluated by faculty members.
- g) A completion certificate will be issued to all Summer Internship program Interns only after the completion of internship tenure.

7. SOFTWARE / LEARNING WEBSITES

An internship is a short term work program usually offered to students by companies and institutes who require staff for assistance at junior levels. Thus for the students undergoing internship a professional learning experience is provided to benefit them in their skills as well as career. It will brush existing skills and provide exposure to new skills. Generally it is provided ay entry level in the industry.

Here is a suggestive list for reference only.

- <u>http://www.gksgujarat.org/</u>
- <u>https://anubandham.gujarat.gov.in/home</u>
- <u>https://kaushalyaskilluniversity.ac.in/</u>
- <u>https://www.internshala.com</u>
- <u>https://swayam.gov.in</u>
- https://nptel.ac.in/
- <u>https://neat.aicte-india.org/</u>
- <u>https://www.edx.org/</u>
- <u>https://www.coursera.org/</u>
- <u>https://www.udemy.com/</u>
- <u>https://www.linkedIn.com</u>
- <u>https://www.stumags.com</u>
 https://www.letsintern.com
- <u>https://www.letsintern.com</u>
 <u>https://www.internship.com</u>
- https://www.niternship.com
 https://www.glassdoor.com

8. PO-COMPETENCY-CO MAPPING

Semester III	Summer Internship (Course Code:4330001)										
Semester III	-	POs									
Competency & Course Outcomes	PO 1 Basic & Disciplin e specific knowled ge	PO 2 Proble m Analy sis	PO 3 Design/ developme nt of solutions	PO 4 Engineerin g Tools, Experimen tation & Testing	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Manageme nt	PO 7 Life- long learni ng				
<u>Competency</u>	Us	e principl	es of basic elec	tronics to main And equipm	ntain various elect ent	ronics circuits	;				
CO1) Learn and adopt the engineer's role and responsibilities with ethics.	2	1	1	1	1	1	1				
CO2) Get exposure to the industrial environment for professional activities.	1	1	1	1	1	1	1				
CO3) Get possible opportunities to learn understand and sharpen the technical skills required for technical advancement.	2	1	2	2	1	1	1				
CO4) Develop managerial skills required for professional career.	1	1	2	1	1	1	1				
CO5) Attain skill for writing technical report and prepare poster for presentation.	1	1	-	1	1	1	1				

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

9. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Sr. No.	Name and Designation	Institute	Contact No.	Email					
1	Jiger P. Acharya	GP, Ahmedabad	9429462026	jigeracharya@gmail.com					
2	Alpeshkumar R. Thaker	GP, Ahmedabad	9879709675	alpeshrthaker@gmail.com					
3	Umang D. Shah	GP, Ahmedabad	9427686364	umang.shah111gp@gmail					
Dog D	Post Descurren Demong								

BoS Resource Persons

Sr. No.	Name and Designation	Institute	Contact No.	Email
1	Shri U. V. Buch- BoS Member and Subject in- charge (EC)	G P Ahmedabad	9825346992	uvbuch@gmail.com

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-III

Course Title: Surveying

(Course Code: 4330601)

Diploma programme in which this course is offered	Semester in which offered	
Civil Engineering, Environmental Engineering, Mining	Third	
Engineering	Third	

1. RATIONALE

Before development and planning process for any civil engineering or mining project, at first field survey of that area is carried out and various type of survey maps are prepared. These maps and drawing are used for taking various decisions regarding the planning, designing, estimation, execution and construction process etc.

The diploma pass outs/technicians should therefore know the various methods and instruments required for surveying. They should also have the skill and information to handle and operate the needed survey instruments. It is also important for them to be well aware about the use of advance surveying instrument such as total station, GPS and related software to enhance the knowledge and abilities required for surveying in field.

Therefore, this course is designed in such a way that diploma holder can easily carryout survey of given area using traditional and modern survey instrument like chain/tape, dumpy level, theodolite, total station, and use data obtained from survey to measure dimensions, compute area/volume and plot important stations on drawing sheet to obtain plan/map of desired area.

2. COMPETENCY

The course content should be taught and with the aim to develop different types of skills so that students are able to acquire following competencies.

- 1. Carry out civil engineering survey to prepare drawings & maps
- 2. Interpret the drawings and maps for calculating different physical quantities like length, area, volume, elevations etc.

3. COURSE OUTCOMES (COs)

1. Use basics of Surveying and choose appropriate scale.

2. Carry out civil engineering survey using chain and tape, compass & Plane table and prepare drawing

- 3. Carry out leveling using dumpy level/ Digital level/ Auto level and draw contours.
- 4. Carry out theodolite traverse survey, compute necessary data and draw traverse
- 5. Compute R.L. of given points using trigonometric survey.

4. TEACHING AND EXAMINATION SCHEME

Teachi	ing Scł	neme	Total Credits	Examination Scheme				
(In	Hours	s)	(L+T/2+P/2)	Theory	eory Marks Practical I		l Marks	Total
L	Т	Р	С	CA*	ESE	CA	ESE	Marks
03	-	04	05	30	70	25	25	150

(*):Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the sub-components of the COs. Some of the **PrOs** marked **'*'** are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. Required
1	Perform ranging and chaining operations in different field conditions.	02	02
2	Perform chaining and ranging where different types of obstructionsare present.	02	02
3	Take offsets (Perpendicular and Oblique) in different field conditions.	02	02
4	Compute area of given plan by Mechanical/ Digital Planimeter	02	02
5	Perform temporary adjustments of Prismatic Compass	03	02
6	Determine bearings of different survey lines by using Prismatic Compass	03	04
7	Determine included angles from measured bearings.	03	02
8	Set plane table by different orientation methods on given surveystation	03	04
9	Project in Plane Table Survey: - Prepare map of open vacant land (min 600 sq.m) using anyplane table method	03	04
10	Perform temporary adjustments of Level Take and record the level reading in the level book Determine Reduced level using both methods by applying checks	04	04
11	Carry out fly levelling in different field conditions.	04	02
12	Carry out profile levelling in different field conditions	04	02
13	Project in Profile Levelling: Carry out the levelling survey on an undulated ground and prepare the drawing sheet (minimum area under survey (50 m X 60 m)	04	06
14	Identify various parts of the theodolite and Temporary Adjustment of Theodolite	05	02

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. Required
15	Measurement of horizontal angle by Repetition & Reiteration	05	04
16	Measurement of vertical angle & deflection angle	05	02
17	To Carry out the project for a closed traverse 4 to 5 stations and prepare the drawing sheet using Gale's Table	05	06
18	Calculation of Height of Object using trigonometry survey	06	04
	Total		56

<u>Note</u>

- I. More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- II. The following are some **sample** 'Process' and 'Product' related skills(more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

S. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Operation and handling of survey instruments	20
2	Taking observations and recording	20
3	Computation of survey data and plotting/ Drawing	40
4	Answer the questions	10
5	Follow safe practices measures while performing practicals	10
Total		100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practical in all institutions across the state.

S. No.	Equipment Name with Broad Specifications	PrO. No.
1	Metric Measuring Chain (20m and 30m) as per IS 1492 - 1970.	1 to 3
	M.S. Arrows of 4 mm diameter and 40 cm height	
2	Measuring Tape such as Metallic tape, fiber glass tape, invar tape,	1 to 3, 8, 9, 12,
	steel tape, linen tape etc (5m, 10m, 20m, 30m & 50m)	13, 17,18
3	Ranging Rods of length 2 to 3 meters with conical metallic shoe	1,2, 6, 7, 8, 9,
	fitted at bottom & fully painted with 20 cm. long colour bands of	15, 17
	either a) Black & White b) Red & White as per IS 2288 - 1963	
4	Mechanical Planimeter: Accuracy: +/- 0.2 %	4
5	Digital Planimeter: Easy conversion function of unit and scale,	4
	Accuracy: Within +/-0.2%(Within +/-2/1000pluses)	
6	Prismatic Compass consisting of brass or aluminum circular box	5 to 7
	with a diameter of 100/125 millimeter. Aluminum circle consists of	
	a needle graduated to 30'.	

S. No.	Equipment Name with Broad Specifications	PrO. No.
7	Plane table board of 750mm x 900 mm size with a fitted tripod, with standard accessories namely Trough compass, Telescopic alidade, Spirit level, Canvas cover, Plumbing Fork etc.	8, 9
8	Dumpy Level: Internal Focusing, Magnification 24x to 32x, Length of telescope 300 mm, objective aperture 40 mm, field of view 1° 30', resolution 0.01 cm at 100 mt, plate bubble size 12mm x 87.5 mm, circle diameter 75 mm(magnetic)	10 to 13
9	Digital Level: Accuracy of Height: 1 mm, Resolution of Display: 0.001 / 0.001 m Observing range: 1.6m to 100m, Zoom in: 32x	10 to 13
10	Auto Level: Magnification 24x to 32x, objective aperture 32 mm to 42mm, Field of view: 1° 20' to 1° 25' at 100m	10 to 13
11	Leveling Staff: Made of Aluminium body, Telescopic in 3 PCS, 4m in length, graduated in meters, dm and cm with white background and 5 mm thick black strips with suitable locking arrangement	10 to 13
12	Vernier Theodolite: Length of telescope 178 mm, Magnification 25X Effective Aperture 38mm, Field of View 2.6 M at 100M, Short Focus 1.5M, Stadia Ratio 1:100, Stadia Constant 0, Circle Diameter Hz113mm, V100 mm Graduation 20' / 10', Vernier Reading 20" / 10".	14 to 18

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs and PrOs. More could be added to fulfill the development of this competency.

- a) Work as a team member/ individual.
- b) Follow ethical practices.
- c) Follow safe practice on site.
- d) Practice of environmental friendly methods and processes.

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

Only the major Underpinning Theory is formulated ashigher level UOs of *Revised Bloom's taxonomy* in order development of the COs and competency is not missed out by the students and teachers. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes	Topics and Sub-topics
Onit	(UOs)	
Unit 1 Introduction to	1a. Explain thebasics ofsurveying.1b. Apply various	1.1 Definitions, Objective and uses of surveying,Classification of Survey, Principles of Survey1.2 Types of Scale and selection of scale,
Surveying	types of scale as per needs.	Construction of diagonal scale
Unit 2	2a. Explain procedure for	2.1 Methods & Accessories of Linear Measurement, Principle of Chain Surveying,
Linear	linear	Method of Chaining on Level Ground
Measurement	measurements.	2.2 Errors and Mistakes in Chaining and
	2b. Prepare drawing as per recorded	precautions against it, Chain and Tape
	as per recorded measurements in the	Corrections, Ranging, 2.3 Well-Conditioned and Ill-Conditioned
	field book.	Triangles, Selection of Survey Stations ,
	2c. Compute area of	Equipments for Chain Survey
	plan by planimeter	2.4 Procedure of Field Work, Conventional
		Symbols , Procedure & Equipments for Plotting 2.5 Computation of Area from Plotted Plan using Planimeter
		2.6 Computation of Area by The Mid-Ordinate
		Rule, The Average-Ordinate Rue, The Trapezoidal
		Rule and Simpson's Rule, Computation of Volume
		using Prismoidal Rule and Trapezoidal Rule
Unit 3	3a. Explain	Compass:
Traverse by	procedure for	3.1 Introduction, Purpose, Definitions & Principle
-	angular measurements &	of Compass Surveying, Traversing, Methods of
Compass and	Record bearing	Traversing , Types of Compass , Temporary Adjustment of Prismatic Compass
Plane Table	accurately	3.2 Field Procedure of Observing Bearing,
	3b. Compute	Problems on Whole Circle Bearing and
	Interior angles from	Quadrantal Bearing
	measured bearings.	3.3 Problems on Fore and Back Bearings,
	3c. Prepare	Problems on Magnetic Declination
	drawing as perfield	3.4 Problems on Included Angle, Problems on
	conditions and	Local Attraction,
	requirements using plane table	3.5 Field Procedure of Compass Traversing,
		Plotting of Compass Traverse, Adjustment of Closing Error, Sources of Error in Compass
		Closing Error , Sources of Error in Compass , Precautions to be Taken in Compass Surveying
		Plane Table:
		3.6 Principle & Accessories of Plane Table ,
		Orientation ,
		3.7 Procedure of Setting up Plane Table over a
		Station, Methods of Plane Tabling

Unit	Unit Outcomes	Topics and Sub-topics					
	(UOs)	· · ·					
		Special Methods of Resection					
		3.8 Procedure of Plane Table Traversing,					
		Advantages and Disadvantages of Plane Tabling					
Unit 4	4.a Explain procedure for	4.1 Introduction Basic terminology related with Leveling					
Leveling &	leveling using	4.2 Types of Level: Dumpy Level, Tilting Level,					
Contouring	instruments and levelling staff and	Auto Level, Digital Level 4.3 Components of Dumpy Level with neat					
	record reading in	Sketch, Types of Levelling Staffs					
	level book page.	4.4 Temporary adjustment of Level, Classification					
	4.b Carry out	of Levelling					
	corrections	4.5 Finding out the R. L. in Level Book by H.I.					
	for errors in levelling	Methods withnecessary check with examples					
	4.c Prepare contour maps by calculating	4.6 Finding out the R. L. in Level Book by Rise & Fall Method with necessary check with examples					
	Reduce level as per	4.7 Correction for Curvature and refraction and					
	level book.	related examples, Errors in Levelling					
		4.8 Contour, its uses of & Characteristics					
		4.9 Methods of Contouring, Interpolation of					
		contours					
		4.10 Preparing drawing & estimation of gradients					
		Calculation of capacity of reservoirs & related examples					
Unit 5	5a. Explain the basic	5.1 Introduction to theodolite, Uses of theodolite,					
onic 5	function of different	Sketch and parts of Transit Vernier theodolite					
Theodolite	parts theodolite.	5.2 Reading of main and vernier scale on					
Traverse	5b. Operate	horizontal and vertical plate					
	theodolite and read	5.3 Temporary adjustment of a theodolite					
	horizontal and	5.4 Permanent adjustment of theodolite (Fundamental axis of theodolite and their					
	vertical angle.	relationship)					
	5c. Determine the	5.5 Definitions and various technical terms					
	latitude and	5.6 Methods of measuring horizontal angles and					
	departure of given	vertical angles					
	points.	5.7 Use theodolite for measuring a magnetic					
		bearing, prolong a line, ranging a line 5.8 Measuring direct and deflection angles					
		5.9Errors in theodolite work					
		5.10 Theodolite Traversing					
		5.11Traverse computations					
		Closing errors, Balancing the traverse					
	Ca. Calaulate the	5.12 Gale's Traverse Table & Related examples					
Unit 6	6a. Calculate the	6.1 Introduction & Methods of observations (Direct and Reciprocal)					
Trigonometric	height of objects	6.2 Methods of determining the elevation of a					
-	through a	particular point when base of the object is					
Survey	trigonometrical	accessible					
	levelling.	6.3 when base of the object is inaccessible					
		6.4 Related examples using all methods					

Unit	Unit Title	Teachin	Distribution of Theory Marks						
No.		g Hours	R	U	Α	Total			
			Level	Level	Level	Marks			
Ι	Introduction to Surveying	02	02	02	00	04			
П	Linear Measurement	06	04	06	04	10			
Ш	Traverse by Compass and Plane Table	08	02	04	04	14			
IV	Leveling & Contours	10	04	04	08	16			
V	Theodolite Traverse	12	06	06	08	20			
VI	Trigonometric Survey	04	00	02	04	06			
	Total	42	18	24	28	70			

9. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions assess the attainment of the COs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary slightly from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated co-curricular activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a. Visit a working site and calculate area of land using planimeter and compare it with actual area
- b. Visit nearby open plot and plot its boundaries with respect to adjacent road/ wall / using chain/tape or theodolite surveying
- c. Undertake micro-project.
- d. Give seminar on any relevant topic.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.

b) Guide student(s) in undertaking micro-projects.

c) *'L' in section No. 4* means different types of teaching methods that are to be employed by teachers to develop the outcomes.

d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.

e) With respect to *section No.10*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.

f) Guide students on how to address issues on environment and sustainability

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be *individually* undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry.In special situations where groups have to be formed for micro-projects, the number of students in the group should *not exceed three*.

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than **16** (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- 1. Find out the area of the given plan by planimeter/ digital planimeter
- 2. Find out the area of an open plot using linear measurement instruments
- 3. Calculate the Volume of Earthwork of road/canal section using standard equations and compare the results.
- 4. Compute Interior angles from Fore bearings and back bearings using Prismatic Compass
- 5. Calculate the volume of earthwork from a given contour map
- 6. Measure the vertical height and find out the R.L. of the top of the tower/object using a theodolite
- 7. Prepare Auto CAD drawing of contour map
- 8. Prepare Auto CAD drawing of Theodolite traverse and find area of it
- 9. Prepare Auto CAD drawing of Compass Traverse
- 10. Collect the relevant technical and commercial information of the survey instruments available in the market with specifications.

13. SUGGESTED LEARNING RESOURCES

S.	Title of Book	Author	Publication with place, year and
No.	THE OF BOOK	Author	ISBN

S. No.	Title of Book	Author	Publication with place, year and ISBN
1	Surveying and levelling Vol-I	T. P. Kanetkar & S. V. Kulkarni	Puna Vidyarthi GrihaPrakashan
2	Surveying and Levelling Vol-I	Dr. B. C. Punmia	Laxmi Publications Pvt.Ltd.
3	Surveying and Levelling Vol-I	Hussain & Nagrani	S. Chand New Delhi
4	Surveying	Mimi Das Saikia	PHI Learning Pvt. Ltd
5	Fundamentals of Surveying	S. K. Roy	PHI Learning Pvt. Ltd
6	Surveying and Levelling, 2 nd Edition	N N Basak	McGraw Hill Education Pvt. Ltd
7	A Textbook of Surveying and Levelling	R. Agor	Khanna Publishers

14. SOFTWARE/LEARNING WEBSITES

- 1. www.nptel.iitm.ac.in
- 2. Auto CAD, Civil Architect
- 3. www.Autodesk.com,

15. PO-COMPETENCY-CO MAPPING

Semester II		(Civil Engin	-	rawing(Cour Os and PSOs		de:432	20601)		
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledg e	PO 2 Proble m Analysi s	PO 3 Design/ developm ent of solutions	PO 4 Engineeri ng Tools, Experime ntation &Testing	PO 5 Engineering practices for society, sustainability & environment	PO 6 Proje ct Man age ment	PO 7 Life- long learn ing	PSO 1	PSO 2	PSO 3 (If needed)
<u>Competency</u>	 Carry out civil engineering survey to prepare drawings & maps Interpret the drawings and maps for calculating different physical quantiti like length, area, volume, elevations etc. 								intities	
CO a) Use basics of Surveying and choose appropriate scale.	3	2	-	-	-	-	2	-	-	-
CO b) Carry out civil engineering survey using chain and tape, compass & Plane table and prepare drawing	3	2	2	3	-	2	3	-	_	-
CO c) Carry out leveling using dumpy level/ Digital level/ Auto level and draw contours.	3	3	3	3	-	3	3	-	-	-
CO d) Carry out theodolite traverse survey, compute	3	3	3	3	-	3	3	-	-	-

necessary data and draw traverse										
CO e) Compute R.L. of given points using trigonometric survey.	3	3	3	3	-	-	2	-	-	-

Legend: '3' for high, '2' for medium, '1' for low or '-'for the relevant correlation of each competency, CO, with PO/ PSO

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No.	Name and Designation	Institute	Contact No.	Email
1	Shri Ketan C Varmora	Government	9725335599	kcvarmora@gmail.c
		Polytechnic, Kheda		om
2	Shri Pranav P Mehta	Government	9904779952	pranavhy@gmail.c
2	SIIII PI di dv Pivienta	Polytechnic, Ahmedabad	330477333Z	om

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-III

Course Title: Mechanics of Structures

(Course Code: 4330602)

Diploma programme in which this course is offered	Semester in which offered
Civil Engineering, Environment Engineering	Third Semester

1. RATIONALE

After learning Mechanics of rigid bodies in the second semester as a course Engineering Mechanics, Mechanics of Structures mainly deals with analysis of deformable structures. The primary purpose of the study of this course is to understand the behavior of various structural elements like beams, columns and truss members (struts/ties) under direct and transverse loads. Study of slope and deflection of beams will give insight to students about 'Stiffness', a very important property of the structure. This course enables the student to analyse the determinate structure and this will be helpful for safe and economical design of Steel & Concrete Structures used in Civil Engineering construction. Hence, this course is also a prerequisite of design of structure.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Use the principle of Mechanics of Structures to solve broad-based engineering related problems.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with the identified competency are to be developed in the student for the achievement of the following COs:

- a) Analyse structural behaviour of various materials under axial loading.
- b) Determine moment of inertia of a symmetrical and asymmetrical section about a given axis.
- c) Draw and Interpret shear force and bending moment diagrams and determine the bending and shear stresses in beams for various types and loading conditions.
- d) Determine slope and deflection in cantilever and simply supported beams.
- e) Determine axial forces in the members of simple truss.
- f) Analyse the column for axial load with various end conditions.

Teach	-	-	Total Credits	Examination Scheme				
(Ir	Hours	5)	(L+T+P/2)	Theory Marks		Theory Marks Practical Marks		Total
L	Т	Р	С	СА	ESE	СА	ESE	Marks
3	0	2	4	30*	70	25	25	150

4. TEACHING AND EXAMINATION SCHEME

(*):Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the sub-components of the COs. Some of the **PrOs** marked **'*'** are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
1	Conduct tension test on a given sample of mild steel and draw stress-strain curve.	I	04*
2	Determine Young's Modulus of wire of given material.	I	02*
3	Find out Compressive Strength of Cast Iron, Mild Steel, Wooden specimen with parallel & perpendicular to grains & Concrete cube.	I	04*
4	Determine Izod impact value and Charpy impact value of given materials.	I	04*
5	Compute Polar Moment of Inertia of Fly Wheel.	Ш	02*
6	Conduct flexural test on wooden beam and find out ultimate bending stress.	III,IV	02*
7	Conduct shear test (Single and Double shear) on mild steel and cast iron specimen.	III,IV	02*
8	Find out deflection of cantilever beam for end point load and simply supported beam for central point load	V	02*
9	Analyse at least two simple trusses using analytical method (method of joints) and verify with graphical method.		04*
10	Demonstrate End Conditions of Column.	VII	02*
	Total hours		28 Hrs.

<u>Note</u>

- *i.* More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- *ii. The following are some sample 'Process' and 'Product' related skills(more may be added/deleted depending on the course) that occur in the above listed Practical Exercises of this course required which are embedded in the COs and ultimately the competency.*

Sr. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Identify components	10
2	Prepare experimental setup.	20
3	Operate the equipment setup.	20

Sr. No.	Sample Performance Indicators for the PrOs	Weightage in %
4	Follow safe practices .	10
5	Record observations correctly.	20
6	Interpret the result and conclude.	20
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practicals in all institutions across the state.

Sr. No.	Equipment Name with Broad Specifications	PrO. No.
1	Universal Testing Machine with beam and shear attachment.	1,6 &7
2	Searl's apparatus to find Young's modulus of wire	2
3	Compression Testing Machine.	3
5	Izod & Charpy Impact Test Apparatus	4
4	Fly Wheel for polar moment of inertia	5
7	Deflection of beam apparatus	8
8	Working Model of End conditions of column	10

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs and PrOs. More could be added to fulfill the development of this competency.

- a) Work as a leader/a team member.
- b) Follow safety practices while using equipment.
- c) Realize importance of green energy. (Environment related)

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

The major underpinning theory is given below based on the higher level UOs of *Revised Bloom's taxonomy* that are formulated for development of the COs and competency. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at different levels)	
Unit – I Direct Stress & Strain	 1a. Evaluate Material properties Under Longitudinal and Lateral Loads. 1b. Calculate stress and strain under thermal variation. 1c. Interpret stress strain curve for various material. 1d. Analyse composite & compound section for stress and strain. 1e. Compute Strain Energy under different types of loading on elements. 	 Direct stress, Linear strain, Elasticity, Elastic limit, Hook's law, Modulus of Elasticity or Young's modulus, Stress Strain curve for mild steel bar under tension with numerical problems. Lateral stress and strain, Poisson's ratio, Volumetric strain, Bulk modulus, relation between three moduli and numericals. Basics Concepts of Shear Stress , Shear Strain & Modulus of rigidity. Concept of composite and compound section, modular ratio and numericals. Concept of Thermal stress and strain, Thermal stresses for non-yielding and yielding condition with numericals. Stresses due to gradual, sudden and impact load, corresponding deformation, Strain energy, Resilience, Proof resilience and Modulus of resilience with numericals.
Unit – II Moment of Inertia	 2a. Locate the axis of symmetry & Centroidal axis in symmetrical & asymmetrical solid and hollow sections 2b. Apply Parallel axis theorem to determine moment of inertia, for symmetrical & asymmetrical sections about centroidal axis and any other reference axis. 2c. Apply Perpendicular axis theorem to determine Polar Moment of Inertia of a section. 	 2.1. Importance of Moment of Inertia. 2.2. Axis of symmetry, Centroidal axis and axis of reference. 2.3. Parallel Axis Theorem & Perpendicular Axis Theorem 2.4. Formulas to calculate Moment of Inertia of solid and hollow rectangle, square, circle, triangle shapes (without derivations). 2.5. Moment of Inertia of symmetrical and asymmetrical I-section, Channel section, T-section, Angle section, Hollow sections and Built up sections about Centroidal axis and any other reference axis using Parallel axis theorem. 2.6. Polar Moment of Inertia of solid & hollow circular sections.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
Onit	(4 to 6 UOs at different levels)	Topics and Sub-topics
Unit– III S.F. & B. M. in Beam	 3a. Identify statically determinate and statically indeterminate beams. 3b. Analyse statically determinate beam for Bending Moment and Shear Force. 3c. Draw Shear Force and Bending Moment diagram for statically determinate beams. 3d. Interpret Shear Force and 	 3.1 Statically Determinate and statically indeterminate beam examples. 3.2 Concept of Bending Moment and Shear Force in beam. 3.3 Sagging and Hogging Bending Moment. Positive and Negative Shear Force. 3.4 Calculation of Bending Moment and Shear Force at various sections of beam for cantilever simply supported and overhang beam subjected to point to be address.
	Bending Moment diagram of statically determinate beams.	load and/ or u.d.l.3.5 S.F. & B.M. Diagram for above beams3.6 Point of Contra-flexure & its importance.
Unit– IV Bending & Shear Stress in Beam	 4a. Determine Bending stress at a particular section of beam using the bending equation. 4b. Draw a Bending stress distribution diagram for a particular beam section. 4c. Determine Shear stress at a particular section of beam using the shear equation. 4d. Draw a Shear stress distribution diagram for a particular beam section. 4e. Identify factors affecting Bending and Shear stress. 	 4.1 Concept and theory of pure bending, assumptions, Bending equation (without derivation), Section Modulus, Bending stresses and their nature, Bending stress distribution diagram. 4.2 Concept of moment of resistance and simple numerical problems using bending equation. 4.3 Shear stress equation (without derivation), relation between maximum and average Shear stress for rectangular and circular section. 4.4 Shear stress distribution for square, rectangular, circular, angle sections, channel section, I-section, T section. Simple numerical problems based on Shear equation.
Unit– V Slope and Deflection	 5a. Differentiate between strength and stiffness of structural member. 5b. Calculate maximum slope and deflection in cantilever and simply supported beams under symmetrical loads. 5c. Identify factors affecting slope and deflection. 	 5.1 Concept of Slope & Deflection of beams. 5.2 Flexural rigidity and its significance. 5.3 Formulas (without derivation) of maximum slope & deflection for cantilever beams subjected to point load at free end and u.d.l. Over the entire span. 5.4 Formulas (without derivation) of maximum slope & deflection for simply supported beams subjected to point load at center and u.d.l. over the entire span.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at different levels)	
	6a. Suggest the type of truss for	6.1 Type of truss - Simple, fink, compound
Unit– VI	given situation with proper	fink, Howe truss, Pratt truss, North
Analysis of	justification.	light truss, king post truss, queen post
Truss	6b. Differentiate perfect, deficient	truss, French truss. Compare the
	and redundant truss	simple truss with the beam.
	6c. Analyse the simple truss using	6.2 Perfect, deficient and redundant truss.
	the method of joints.	6.3 Analysis of different trusses to find out
	6d. Analyse the simple truss using a	axial forces in members using
	graphical method.	analytical method (method of joint)
		and graphical method.
Unit– VII	7a Interpret various column end	7.1 Column and Strut, radius of gyration,
Column &	conditions	slenderness ratio, Short Column and
Strut	7b Analyse column for load	Long Column.
	carrying capacity with Euler's	7.2 End conditions & effective length of
	theory	column. Mode of failure in column.
	7c Analyse column for load	7.3 The limitations of Euler's theory for
	carrying capcity with Rankine's	short column, Euler's formula for
	theory	crippling load of long columns and
		numericals.
		7.4 Rankin's formula for buckling load of
		short & long columns and numericals.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
I	Direct Stress & Strain	10	2	4	8	14
П	Moment of Inertia	04	2	2	4	08
Ш	S.F. & B. M. in Beam	08	2	4	8	14
IV	Bending & Shear Stress in Beam	06	2	2	6	10
V	Slope and Deflection	04	2	2	4	08
VI	Analysis of Truss	06	2	2	6	10
VII	Column & Strut	04	2	2	2	06
	Total	42	14	18	38	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may slightly vary from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Collect different situations with photographs of a structural members where axial force is predominant.
- b) Collect the photographs of steel structural elements made of I-section, angle section, channel section and built-up section.
- c) Collect different situations with photographs of a structural members where bending moment and shear force are predominant
- d) Collect the photographs of five different types of truss in the field.
- e) Collect the information with photographs of structural failure due to excessive axial load.
- f) Collect the information with photographs of structural failure due to excessive bending moment
- g) Collect the information with photographs of structural members having excessive deflection (beyond permissible limit)
- h) Collect the information with photographs of failure of columns due to earthquake.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No.* 4 means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.10*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on environment and sustainability.
- g) Guide students for using data manuals.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based (group of 3 to 5). However, **in the fifth and sixth semesters**, the number of students in the group should **not exceed three**.

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar

presentation of it before submission. The duration of the micro-project should be about **14**-**16** *(fourteen to sixteen) student engagement hours* during the course. The students ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Prepare spreadsheet or computer program to calculate the stresses in the composite section.
- b) Compare tensile strength and cost of three locally available structural steel bars.
- c) Compare modulus of elasticity of wires of three different materials using Searle's apparatus.
- d) Prepare spreadsheet or computer program to calculate the support reactions of statically determinate beams.
- e) Prepare spreadsheet or computer program to calculate the bending stress and shear stress in a beam having a rectangular or circular section.
- f) Analyse statically determinate beam using freeware software.
- g) Prepare spreadsheet or computer program to calculate slope and deflection of simply supported beam and cantilever beam for various load cases.
- h) Calculate modulus of elasticity of a material by measuring deflection of beam.
- i) Using drafting software, analyse the truss graphically.
- j) Analyse the truss using freeware software.
- k) Prepare spreadsheet or computer program to calculate safe load on column using Euler's and Rankine's formula.

15.	SUGGESTED LEARNING RESOURCES					
Sr. No.	Title of Book	Author	Publication with place, year and ISBN			
1	Mechanics of Structures	Dr. H.J. Shah &	Charotar Publication, Anand. (2016)			
	(VolI)	S.B. Junnarkar	ISBN: 97-893-850-392-70			
2	Strength of Materials	R.S.Khurmi	S Chand Publishing, Delhi (2019)			
	(Mechanics of Solids)	N. Khurmi	ISBN: 97-893-528-339-79			
3	Strength of Materials	Dr. R.K.Bansal	Laxmi Publications(P) Ltd. New			
			Delhi(2005)			
			ISBN: 97-881-700-814-70			
4	Strength of Materials	S. Ramamrutham	Dhanpat Rai Publishing Company			
		& R.Narayanan	(2011)			
			ISBN:97-881-874-335-45			
5	Theory of Structures	R.S.Khurmi	S Chand Publishing, Delhi (2000)			
			ISBN: 97-881-219-052-06			

13. SUGGESTED LEARNING RESOURCES

14. SOFTWARE/LEARNING WEBSITES

- a) <u>https://nptel.ac.in/courses/105104160</u> (NPTEL Course :- Mechanics of Solids by IIT, Kanpur)
- b) <u>https://www.youtube.com/watch?v=GkFgysZC4Vc&list=PL27C4A6AEA552F9E6</u> (NPTEL Video Lectures by IIT, Kharagpur)
- c) <u>www.vlab.co.in</u> (Virtual Lab by Ministry of Education, Government of India)

15. PO-COMPETENCY-CO MAPPING

Semester III	Mechanics of Structures (Course Code: 4330602)						
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge			PO 4 Engineering Tools, Experimentation &Testing	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Management	PO 7 Life-long learning
<u>Competency</u>	Use the prime problems.	nciple of M	lechanics of Str	uctures to solve br		neering related	
Course Outcomes COa) Analyse structural behaviour of various materials under axial loading.	2	3	-	3	2	2	2
COb) Determine moment of inertia of a symmetrical and asymmetrical section about a given axis.	2	3	-	2	2	2	2
COc) Draw and Interpret shear force and bending moment diagrams and determine the bending and shear stresses in beams for various types and loading conditions.	2	3	_	-	2	2	2

COd) Determine slope and deflection in cantilever and simply supported beams.	2	3	_	3	2	2	2
COe) Determine axial forces in the members of simple truss.	2	3	-	-	2	2	2
COf) Analyse the column for axial load with various end conditions.	2	3	-	2	2	2	2

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE <u>GTU Resource Persons</u>

Sr. No.	Name and Designation	Institute	Contact No.	Email
1.	Shri P.V. Rayjada, HOD Applied Mechanics	G.P.Rajkot	9824281646	satwikpr@gmail.com
2.	Dr. J.B.Oza, Sr. Lecturer Applied Mechanics	G.P.Rajkot	9429048253	jiteshboza@gmail.com
3.	Ms. Bhruguli H. Gandhi, Sr. Lecturer Applied Mechanics	G.P. Himatnagar	9099076555	<u>bhruguli@gmail.com</u>
4.	Shri S.M.Kondhiya, Sr. Lecturer Applied Mechanics	G.P. Rajkot	9825764005	sharadkondhiya@gmail.com
5.	Shri R.R. Makwana, Lecturer Applied Mechanics	L.E. College, Morbi (Polytechnic)	9824128087	rakesh_mak@rediffmail.com

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-III

Course Title: Construction Material and Technology

(Course Code: 4330603)

Diploma programme in which this course is offered	Semester in which offered
Civil Engineering	Third

1. RATIONALE

In any Civil Engineering Project, material cost plays prime role in the total project cost. Therefore, selection of appropriate material is very much important. To suggest/ select appropriate material, first and for most necessary is to know materials' properties and characteristics. Moreover concepts, Principles and procedures are equally important to have a desired project life. Construction processes of sub structure, super structure and building finishes are core to the execution of any building. This course will enrich knowledge about materials and civil engineering techniques with the use of various construction equipments in to the students to make them competent performing their jobs with ease and confidence.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competencies:

- To select appropriate building material supported by conceptual knowledge about building material.
- To develop awareness about latest/ green building materials.
- Implement civil engineering projects using state of the art technology in construction works following safety norms.
- Deploy appropriate construction machineries.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

- a) Appreciate important properties of different building materials & function of various building components.
- b) Select appropriate locally available brick/stone as per the requirement.
- c) Select appropriate binding materials and /or concrete in building construction.
- d) Deploy the ancillary material(s) such as Timber, Glass, PVC, paints, Varnish etc. as per the requirement.
- e) Select the appropriate type(s) of foundation required for structure as per site/ soil condition.
- f) Implement various construction activities like masonry, concreting, formwork, temporary structure, plastering, D.P.C, Anti termite treatment and Plumbing/ Electrical fittings etc using construction machinery, as per need.
- g) Describe the importance of maintenance work and inculcate safety measures to be adopted in civil engineering activities.

4. TEACHING AND EXAMINATION SCHEME

Teachi	ing Scł	neme	Total Credits	Examination Scheme				
(In	Hours	s)	(L+T/2+P/2)	Theory	y Marks	Practica	l Marks	Total
L	Т	Р	С	CA*	ESE	СА	ESE	Marks
3	-	2	4	30	70	25	25	150

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the sub-components of the COs. Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
1	Conduct local market survey for common civil engineering	I	Home*
1	materials to tabulate cost and quality.		assignment
	Perform tests on given sample of brick such as	Ш	06*
2	Soundness		
2	Water absorption		
	Compressive strength		
3	Conduct field test on given sample of brick and cement.	II, III	2
	Perform lab tests on given sample of cement	III	4*
4	 Initial and final setting time 		
	Compressive strength		
	Perform test on given sample of fine aggregate.	III	2*
5	Sieve analysis		
	 Silt and clay content. 		
	Assess the quality of different types of timber and timber	IV	2
6	products (please arrange to visit nearby saw mill or timber		
	mart).		
7	Identify components of building and /structures in the	I	2
<i>'</i>	given model.		
	Draw foundation plan and mark layout on the ground for a	V	2*
8	building of Two room load bearing structure from the		
	given line out plan.		
	Draw foundation plan and mark layout on the ground for a	V	4
9	building of Four room load bearing structure from the		
	given line out plan.		
10	Arrange the bricks to make $1\frac{1}{2}$ brick thick wall in English	VI	2*

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
	and Flemish bond. (Minimum 3 Course)		
11	Prepare a visit report to the construction site where activities such as Excavation, Foundation, Masonry, Scaffolding, Formwork, Centering and Concreting are being executed considering standard safety procedure.	V, VI and VII	4*
12	Prepare a visit report to the construction site where activities such as Flooring, Plastering/ Pointing and Painting are being executed considering standard safety procedure.	VI	2*
13	Identify various components of staircase and doors and windows from the model.	VI	2*
14	Draw sketches for Foundations-Various types, Doors & Windows and timbering in Trenches in sketch book.	V, VI	4*
		Total	28

<u>Note</u>

- *i.* More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- *ii.* The following are some **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency..

S. No.	Sample Performance Indicators for the PrOs	Weightage in %					
	For PrOs 2, 3, 4, 5						
1	Preparation of experimental set up	20					
2	Setting and operation	20					
3	Safety measures	10					
4	Observations and Recording	10					
5	Interpretation of result and Conclusion	20					
6	Answer to sample questions	10					
7	Submission of report in time	10					
	Total	100					

S. No.	Sample Performance Indicators for the PrOs		Weightage in %
	For PrOs 14	-	
1	Neatness, Cleanness on drawing sheet		10
2	Uniformity in Drawing and line work		10
3	Creating given drawing		40
4	Dimensioning the given drawing and writing text		20
5	Answer the question		10
6	Submission of drawing in time		10
		Total	100

S. No.	Sample Performance Indicators for the PrOs	Weightage in %					
	For PrOs 1, 8, 9, 11, 12						
1	Discipline	10					
2	Involvement of construction at site	20					
3	Data collection at site	20					
4	Organization of report	20					
5	Answer the question	10					
6	Timely submission of report	20					
	Total	100					

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practicals in all institutions across the state.

S. No.	Equipment Name with Broad Specifications	PrO. No.		
1	Bricks, Compressive strength testing machine, Oven, Digital Balance, tray.	02		
2	Vicat apparatus conforming to IS : 5513-1976, Balance, Gauging Trowel, Digital Stop Watch.	04		
3	Cube moulds- 7.06 cm size (9 no.s), Vibrating machine, Enamel04trough, Measuring cylinder- 100 ml/ 200 ml capacity, Trowels,04Nonporous plates, Weighing balance of accuracy 0.02 gm, Grease/04lubricating oil, compression testing machine.04			
4	I.S Sieve set (Sizes- 80 mm, 40 mm, 20 mm, 10 mm, 4.75 mm, 2.36 05 mm, 1.18 mm, 600 μ, 300 μ, 150 μ) sieve shaker with adaptors. 05			
5	Experimental set up for silt and clay content for fine aggregates as 05 per IS 2386-2 (1963)			
6	Measuring Tape, Pegs, Arrows, Line dori, Lime powder, Hammer of standard size and specification as per civil engineering application.	8, 9		
7	Brick, Line dori, Hammer of standard size, Level tube, Plumbs, 1 Mason square.			
8	 Models: Model of a civil engineering structure depicting various components. Cut section of building showing different components Types of Bonds in Brick masonry Types of Door and Windows Types of Stairs 	07, 13, 14		

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs and PrOs. More could be added to fulfill the development of this competency.

- a) Work as a team member/ individual.
- b) Follow ethical practices.
- c) Follow safe practice on site.
- d) Practice of environmental friendly methods and processes.

The ADOs are best developed through the laboratory/ field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

Only the major Underpinning Theory is formulated as higher level UOs of *Revised Bloom's taxonomy* in order development of the COs and competency is not missed out by the students and teachers. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
Unit – I	1a.Describe important properties	1.1 Physical, chemical and engineering
	of building materials used in civil	properties of building materials.
Introduction	engineering construction.	1.2 Application of different building
	1b.Classify the building on the	materials.
	basis of the occupancy and type of	1.3 Alternative materials for the
	construction.	common items in building
	1c.Develop concept of components of building.	construction. 1.4 Introduction of various Civil
		Engineering structures.
		1.5 Functions of various components of
		building and other structures.
Unit – II	2a.Select appropriate brick	2.1 Classification of clay products
Bricks, Rocks	products for different uses in	2.2 Types of bricks
and Stone	building construction.	2.3 Manufacturing process of bricks
	2b.Select appropriate rock/ stone	2.4 Test on bricks.
	products for different uses in	2.5 Standard requirements and grades
	building construction.	of bricks as per BIS.
		2.6 Classification of rocks.
		2.7 Rock products.
		2.8 Characteristics of stones.
		 Structure, texture, strength, gravity, porosity, absorption,
		hardness, durability, weight etc.
		2.9 Standard requirement of building
		stone.
		2.10 Important stones used in
		construction with its suitability.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics		
Unit– III	3a. Appreciate the uses of lime and	3.1 Sources and classification of Lime		
	Pozzolana products in building	3.2 Uses of lime with specific field		
Binding	construction.	situation		
Materials	3b. Select appropriate ingredients	3.3 Types of pozzolanic materials		
and	of proper quality for cement	3.4 Advantages of addition of pozzolonic		
Concrete	concrete as per required BIS codes.	Material.		
	3c. Get prepared different types of concrete and its type.	3.5 Types of cement with their specific use		
		3.6 Grade of cement as per BIS		
		3.7 Engineering properties of cement		
		3.8 Field and laboratory tests of cement as per BIS.		
		3.9 Methods of storing the cement.		
		3.10 Types of aggregate as per BIS		
		3.11 Requirements of aggregate as per BIS.		
		3.12 Engineering properties of		
		aggregate		
		3.13 Test on aggregate		
		3.14 Ingredients of concrete.		
		3.15 Production of concrete,		
		transportation, placing, compaction,		
		curing.		
		3.16 Concrete in different situations		
		viz. hot weather, cold weather,		
		under water etc.		
Unit– IV	4a. Describe timber and wood	4.1 Types of timber		
Timber And	products and its uses in building	4.2 Uses and application of timber		
Miscellaneo	construction.	4.3 Defects in timber and wood		
	4b. Explain different types of	4.4 Seasoning,4.5 Wood products with specific uses.		
us material	advanced building materials and	4.6 Plastics and PVC		
	their uses in construction.	4.7 Paints and Varnish		
		4.8 Materials for anti termite treatment		
		4.9 Glass and fiber.		
		4.10 Steel and iron materials		
		4.11 Ceramic products		
		4.12 Concrete blocks		
		4.13 Refractory		
Unit– V	5a. Know type of foundation and	5.1 Classification and types of		
Cub	its suitability to different type of	foundations		
Sub	soil.	5.2 Selection of the suitable type of		
structure	5b.Explain the failure of foundation	foundation for required structure		
	and remedial measures.	and as per situation		
		5.3 Foundations in black cotton soil,		

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
Unit– VI Building items, Building construction & machinery	6a. Appreciate the different types of building items. 6b. Explain various construction activities like damp proof course (D.P.C) and anti termite treatment. 6c. Able to know the different types of plumbing and electric fittings and laying procedure. 6d. Develop concept of different types of brick and stone masonry. 6e. Explain construction procedure. 6f.Develop concept about various type of form work for Beam, Slab, Column.	 loose soils etc. 5.4 Timbering in trenches 5.5 Failures in foundation, Precautions & remedial measures. 6.1 Plastering & pointing- its purpose, 6.2 Various types, construction procedures, advantages and disadvantages, suitability of each. 6.3 Damp proof course (DPC), water proofing 6.4 Anti-termite measures and treatments 6.5 Construction joints- need and materials used. 6.6 Plumbing and electrification- various types of fittings and laying procedure. 6.7 Brick and stone masonry. 6.8 Selection of suitable type of masonry 6.9 Construction procedures. 6.10 Purpose & types of scaffolding and centering. 6.11 Suitability of scaffolding as per situations and type of structures. 6.12 Erection of centering for
Unit-VII Building maintenance & Safety measures	 6a. Describe concept about the maintenance work, know causes, types and its remedial measures 6b. Understand about the important laws/norms and act of safety. 6c. Explain precautions and precautionary measures of safety. 	 different component. 7.1 Purpose, need, importance, methods. 7.2 Causes and types of defects in buildings. 7.3 Preparation of report on maintenance work. 7.4 Remedial measures and execution 7.5 Procedure of any one type of building maintenance work. 7.6 Importance of various Laws/ Norms/ Regulations/ Acts for safety. 7.7 Safety equipment used in building construction and maintenance. 7.8 Precautions and precautionary Measures. 7.9 Post- accident procedures

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
Ι	Introduction	04	02	04	00	06
I	Bricks, Rocks and stone	07	03	05	04	12
III	Binding Materials and Concrete	07	03	06	06	15
IV	Timber And Miscellaneous material	05	02	03	04	09
V	Sub structure	04	02	02	04	08
VI	Building items, Building construction & machinery	09	03	05	06	14
VII	Building maintenance & Safety measures	06	02	02	02	06
	Total		17	27	26	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary slightly from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Visit a nearby construction site and collect samples of material being used with justification.
- b) Collect samples of alternative Green building material and prepare a report.
- c) Visit a nearby building and identify its type, and its components.
- d) Visit a nearby building and prepare a report on arrangements of horizontal, vertical movement & ventilation.
- e) Visit a construction site where green building technologies are being implemented and prepare report.
- f) Undertake micro-project.
- g) Give seminar on any relevant topic.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No. 4* means different types of teaching methods that are to be employed by teachers to develop the outcomes.

- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.10*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on environment and sustainability.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be *individually* undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should *not exceed three.*

The micro-project could be industry application based, internet-based, workshopbased, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than **16** (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) **Green Building material:** Prepare a report suggesting replacement of atleast 10 nos. of conventional building materials with Green building materials and justify it in terms of cost and environmental impact.
- b) **Acoustic Material:** Prepare a report on application of acoustic materials and present with portfolio of sample materials.
- c) **Refractory Material:** Prepare a report on application of refractory materials and present with portfolio of sample materials.
- d) **Foundation:** Prepare a report on types of foundation (atleast 02) adopted in any near by building(s).
- e) **Construction Technology:** Collect the information of latest technologies in building construction and prepare report on it.
- f) **Maintenance:** Prepare a report on remedial measures that can be taken to repair the cracks in the nearby building.
- g) **Miscellaneous material:** Carry out market survey for identifying various waterproofing materials and prepare a report including application procedure.
- h) **Safety:** Prepare posters/ charts for the awareness of safety in various activates of civil engineering construction.

13. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication with place, year and ISBN
1	Construction Materials	D.N Goshe	Tata McGraw Hill, New Delhi.

C 3 B	Title of Book Civil Engineering Construction Materials	Author S.K Sharma	Publication with place, year and ISBN
C 3 B		C V Charma	
3 B		S.K Slidillid	Khanna Publishing House, New Delhi.
	Building Materials	P.C Varghese	PHI learning, New Delhi.
4 E	ingineering Materials	S.C Rangwala	Charotar Publisher, Ahmedabad.
		Somayaji, Shan	Pearson education, New Delhi.
_	Aaterials	Somayaji, Shan	realson education, new Denn.
6 E	ngineering Materials	R.K Rajput	S. Chand and Co. New Delhi.
7 E	ngineering Materials	C.P Sharma	PHI Learning, New Delhi.
8 B	Building Materials	S.K Duggal	New International, New Delhi.
9 E	ngineering Materials	Dr. Janardan Jha	Publisher. Khanna Publishers, Delhi
10 B	Building Construction	S. P. Arora and Bindra	Dhanpat Rai Publication, Delhi Edition 2013.1SBN: 9788189928803
	Building construction lustrated	Francis D.K. Ching	Standard Publishers Distributors, Delhi
12 B	uilding Construction	S. C. Rangawala	Charotar Publication, Dist-Anand (ISBN-13: 978-8185594859)
13 B	Building Construction	B. C. Punrnia and AK, Jain	Firewall Media, 2005 (ISBN 9788170080534)
14 B	Building Construction	S.K. Sharma	S. Chand and Co. Pvt. Ltd., New Delhi (ISBN:978-81-219-0479-7)
15 B	Building Construction	DrJanardan Zha	Khanna Publication, New Delhi 2007, ISBN —8174091106
16 B	uilding Construction	S. S. Bhavikatti	Vikas Publication House Pvt. Ltd., New Delhi (ISBN: 978-93259-6079-41)
17 A	to Z Building	Sandip Marini	Satya Prakashan; New Delhi (2015)
C	Construction		(ISBN-13: 978-8176849692)
18 P	WD Handbooks for	All India Council	All India Council for Technical
N	/laterials, Masonry.	for Technical	Education (AICTE)
В	Building, Plastering and	Education	
P	ointing-Foundation		
	ractical Civil Engineering Iandbook	Khanna	Khanna Publication
20 N	lational Building Code	BIS	Bureau of Indian Standard, New Delhi
21 B	IIS 962-1989 Code of	BIS	Bureau of Indian
A	Architectural and Building Drawing		Standard, New Delhi
	IS 1038- 1983 Steel	BIS	Bureau of Indian
	Doors. Windows and	-	Standard, New Delhi
	/entilators		, -

14. SOFTWARE/LEARNING WEBSITES

a) www.nptel.iitm.ac.in

- b) <u>http://www.learningconstruction.comi</u>
- c) <u>http://www.understandconstruction.corni</u>
- d) http://www.constructionknowledge.netiwww.learn-to-draw.com
- e) https://www.khanacademy.org/
- f) <u>www.igbc.in</u>
- g) www.grihaindia.org

15. PO-COMPETENCY-CO MAPPING

	Somostor III	Con	stru	ction I	Material	and Techno	logy (C	Course	Code:4	4330603	3)
Semester III						POs and P	SOs				
٤	Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledg e	Probl em Analy	Design/ develop	Tools, Experiment	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Manage ment	Life-	PSO 1	PSO 2	PSO 3 (If neede d)
	<u>Competency</u>	ii. To deve iii.Implem following	 i. To select appropriate building material supported by conceptual knowledge about building material. ii. To develop awareness about latest/ green building materials. iii.Implement civil engineering projects using state of the art technology in construction works following safety norms. iv. Deploy appropriate construction machineries. 								
CO a)	Course Outcomes Appreciate important properties of different building materials & function of various building components .	3	-	-	-	-	-	2	-		
	Select appropriate locally available brick/stone as per the requirement.	3	2	2	2	2	-	2			
	Select appropriate binding materials and /or concrete in building construction	3	2	2	3	2	-	2			
CO d)	Deploy the ancillary material(s) such as Timber, Glass, PVC, paints, Varnish etc. as per the requirement.	2	-	-	-	2	-	1			
CO e)	Select the appropriate type(s) of foundation required for structure as per site/ soil condition.	3	2	2	-	2	-	2			
CO f)	Implement various construction activities like masonry, concreting, formwork, temporary structure, plastering, D.P.C, Anti termite treatment and Plumbing/ Electrical fittings etc using construction machinery, as per need.	3	-	-	-	2	2	2			
CO g)	Describe the importance of maintenance work and inculcate safety measures to be adopted in civil engineering activities	3	-	-	-	2	-	-			

Legend: '3' for high, '2' for medium, '1' for low or '-' for the relevant correlation of each competency, CO, with PO/ PSO

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No.	Name and Designation	Institute	Contact No.	Email
1	Shri Munaf M. Jagadu	Govt.Poly., Ahmedabad	079-26301285	mjagadu@gmail.com
2	Shri Darshan V. Patel	Govt.Poly., Himatnagar	02772-229285	darshan.2228@gmail.com

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2022 (COGC-2022) Semester-III

Course Title: Hydraulics

(Course Code: 4330604)

Diploma programme in which this course is offered	Semester in which offered
Civil Engineering, Environmental Engineering	Third

1. RATIONALE

It is necessary for civil, environmental and transportation engineers to understand the behavior of fluid flow in different conditions in pipes, channels, canals, notches, weirs etc. In the field these conditions are very common and diploma pass-outs have to solve problems related to water seepage and discharge.

The basic knowledge about hydraulics and fluid mechanics will be useful in subjects like Irrigation, Water Resources Management and Public Health Engineering. In this course, basics of hydraulics and its application oriented content has been kept with a focus that students should be able to solve practical problems. Competencies developed by this course would therefore be useful for students while performing his/her job in the field of Water resources / Irrigation/PHE and Environment Engineering.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competencies:

i. Measure the pressure and flow of water in different conditions using various measuring devices

ii. Compute discharge and loss of head through pipes, open channels, notches and other hydraulic structures.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

- a) To measure pressure and determine total hydrostatic pressure for different conditions.
- b) To acquire knowledge of different types of flow, different types of energy, and different types of equation & theory.
- c) To determine head loss of fluid flow through pipes.
- d) To compute discharge by various formulas in open channels.

4. TEACHING AND EXAMINATION SCHEME

Teachi	Teaching Scheme Total Credits		Examination Scheme					
(In	Hours	s)	(L+T/2+P/2)	Theory Marks		Practical Marks		Total
L	Т	Р	С	CA*	ESE	СА	ESE	Marks
3	-	2	4	30	70	25	25	150

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the sub-components of the COs. Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

Sr. No.	Practical Outcomes (PrOs)		Approx. Hrs. require d
1	Measure the pressure of water in pipe using	I	04
	(a) Piezometer (b) Different types of manometers		
2	Determine discharge through a given venturimeter.	II	04
3	Determine coefficient such as Cc, Cv, and Cd for different types of orifices	111	04
4	Compute coefficient of discharge for V notch and Preparation of calibration graph for interpolation and extrapolation	IV	04
5	Compute coefficient of discharge for Rectangular notch and Preparation of calibration graph for interpolation and extrapolation	IV	04
6	Determine loss of head in various diameter of pipes and effect of material of pipe on loss of head	III	04
7	Demonstrate functioning of Bernoulli's Apparatus		02
8	Demonstrate use of Reynold's number		02
		Total	28

<u>Note</u>

- *i.* More *Practical Exercises* can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- *ii. The following are some sample 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed Practical Exercises of this course required which are embedded in the COs and ultimately the competency.*

Sr.	Sample Performance Indicators for the PrOs	Weightage in %
No.		
	For PrOs 2, 5-12, 14 & 15	
1	Selection of appropriate Apparatus	10
2	Perform Standard Experimental Procedure	30
3	Observations and calculations	30
4	Follow Safety Precautions	10
5	Effective participation in practical group	10
6	Answer the question and Submission of work	10
Total		100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to user in uniformity of practicals in all institutions across the state.

Sr. No.	Equipment Name with Broad Specifications	PrO. No.
1	Piezometer	1
2	U-Tube Manometer	1
3	Ventutrimeter	2
4	• V-notch	4
5	Rectangular notch	5
6	• Pipes- PVC, G.I.,	6
7	Measuring Tank	All
8	Stop Watch	All
9	• Gauge	All
10	Hydraulic Bench	All

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above-mentioned COs and PrOs. More could be added to fulfill the development of this competency.

- a) Work as a team member/ individual.
- b) Follow ethical practices.
- c) Follow safe practice on site.
- d) Practice of environmental friendly methods and processes.

The ADOs are best developed through the laboratory/field-based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

Only the major Underpinning Theory is formulated as higher level UOs of *Revised Bloom's taxonomy* in order development of the COs and competency is not missed

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
Unit – I Pressure measureme nt and Hydrostatic pressure	 1a. Explain the terms associated with Hydraulics 1b. Clarify different properties of fluid 1c. Describe different types of pressure and methods of measurement 1d. Explain the relationship between pressure and depth of liquid 1e.Compute total Pressure and Centre of pressure 	 Iopics and Sub-topics 1.1Technical terms used inHydraulics – Fluid Mechanics, Hydrostatics,Hydro- kinematics, Hydro- Dynamics-Ideal and RealFluid. 1.2Properties of liquid – Viscosity- Density-Specific Gravity-Surface Tension-Capillarity Vapour Pressure-Elasticity. 1.3Various types of pressure – Atmospheric Pressure- Gauge Pressure-Absolute Pressure Vacuum Pressure-Separation Pressure/s. 1.4Measurement of pressure/s by different methods 1.5Measurement of difference of pressure using "U"tube Manometer and inverted "U" tube Manometer 1.6Relationship between pressure and depth of liquid 1.7Total pressure and center of pressure I.7.1 Computation of Total Pressure and depth of the center of pressure
Unit- II Hydro kinematics & Hydrodyna mics	 2a. Derive Continuity Equation 2b. Explain different types of flow 2c. Explain different kinds of energy 2d Apply Bernoulli's theorem to measurethe pressure and Discharge. 	 2.1 Discharge & its units, Continuity Equation 2.2 Types of flow - LaminarTurbulent Uniform Non-uniform –Steady- -Un-steady –Rotational and irrotationalOne, Two and Three Dimensional flow 2.3 Reynold's number 2.4 Types of Energy – Potential, Pressure, and kinematics 2.5 Bernoulli's theorem: statement, assumptions, derivation & limitations. 2.6 Practical application of Bernoulli''s theorem

out by the students and teachers. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit- III Flow through pipes	 3a. Explain Head losses 3b. Draw Hydraulic Gradient Line (HGL) and Total Energy Line (TEL) 3c. Computation of diameter of the equivalent pipe. 3d. Compute different Hydraulic Coefficients for different types of orifice 	 3.1Characteristics of flow through pipes 3.2 Major Head losses in pipe: Computation by Darcy's Weisbach equation, Use of Chezy's & Manning's formula, Nomograms 3.3Computation of minor head losses in a pipe. 3.4 Hydraulic Gradient Line (HGL) and Total Energy Line (TEL) 3.5 Flow through pipes in series (Compound Pipe), pipes in parallel. 3.6 Equivalent Pipe 3.7Discharge measurement using orifice 3.8 Various Hydraulic Coefficient and its relation
Unit- IV Flow through Open Channel	 4a.Explain Geometrical properties of channel section 4b.Compute discharge through Notches and Weir with various formula. 4c. Explain conditions for most economical section 	 4.1Definition and classification of channel 4.2 Geometrical properties of channel section: Wetted area, wetted perimeter, hydraulic radius, hydraulic mean depth for rectangular and trapezoidal channel section, Froud's number, 4.3Determination of discharge by Chezy's equation and Manning's equation, Bazin's equation, and Kutter's equation. (Without derivation) 4.4Conditions for the most economical section: rectangular, Trapezoidal, and circular section of open channel. 4.5 Discharge measuring devices: Triangular and rectangular Notches. 4.6 Computation of discharge through different types of weir: Narrow, Broad, Sharp crested weir; Cippoletti weir and Ogee weir. 4.6 Specific energy diagram, Hydraulic jump 4.7 River gauging & measurement of mean velocity.

Unit	Unit Title	Teaching	Distri	bution o	f Theory	Marks
No.).		R	U	Α	Total
			Level	Level		Marks
Ι	Pressure measurement and		4	8	4	16
	Hydrostatic pressure	10	4	0	4	10
=	Hydro kinematics & Hydrodynamics	08	2	6	6	14
	III Flow through pipes		4	8	8	20
IV	IV Flow through Open Channel		4	8	8	20
	Total	42	14	30	26	70

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary slightly from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated **co-curricular** activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

Following is the list of proposed student activities like:

1.Student will visit nearby Canal Structure and Submit report consisting flow data, cross sections, hydraulic data etc. for the same.

2.Student will Survey an industry / Department for handling or using pressure measuring devices.

3.Student will carry out market survey for pipes of different materials.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (MOOCs) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) Use demonstration, video/animation films field/industry visit for explaining complex/abstract concepts of Hydraulics.
- d) This course requires lot of practice on numerical. Students may be asked to solve the numerical during lecture periods and tutorial periods, in addition home

assignments may be given. To avoid copying by students each problem must have different parameters for each student or at least there may be five to six sets of problems with different values., In other words each student will get same problem but with varied parameters. (Values of pressure, volume, flow, force, distance, speed etc may be different for each student)

- e) *'L' in section No. 4* means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- f) About 20% of the topics/sub-topics which are relatively simpler or descriptive in nature is to be given to the students for self-learning, but to be assessed using different assessment methods.
- g) With respect to *section No.10*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- h) Guide students on how to address issues on environment and sustainability

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be *individually* undertaken to build up the skill and confidence in every student to become problem solver so that she/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should *not exceed three.*

The micro-project could be industry application based, internet-based, workshopbased, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than **16** (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Market Survey and comparison of different pipe material.
- b) Case study and collection of different hydraulic parameters of open channel.
- c) Develop practical to find out types of flow(Critical flow, Subcritical flow and Supercritical flow) based on Froude Number.
- d) Determine loss of head of any single building in your campus.
- e) Find out number of weirs and collect the different hydraulic parameters within state/district using Internet sources.

13. SUGGESTED LEARNING RESOURCES

S.	Title of Book	Author	Publication with place, year and
No.		Autio	ISBN

1	Hydraulics, Fluid Mechanics and Hydraulic machine	S.Ramamrutham	Dhanpat Rai
2	Hydraulics, Fluid Mechanics and Hydraulic machine	R. S. Khurmi	S.Chand
3	Hydraulics, Fluid Mechanics and Hydraulic machine	R K Bansal	S.Chand
4	Fluid Mechanics	A K Jain	Khanna Publishers
5	Journal of experiments in Hydraulics	Rao and Hasan	New Height
6	Hydraulic laboratory	Rao and Hasan	New Height
7	Fluid Mechanics	Dr.M.L.Mathur	Std.Publication
8	Fluid Mechanics & Hydraulics	S.C.Gupta	Pearson Education
9	Hydraulics and Hydraulic machine	Prof.V.P.Priyani	Charotar Publication
10	Hydraulics, Fluid Mechanics and Hydraulic machine	S.Ramamrutham	Dhanpat Rai

14. SOFTWARE/LEARNING WEBSITES (From Old Syllabus)

- a) www.nptel.iitm.ac.in
- b) www.waterbouw.tudelft.nl/
- c) www.learnrstv.com
- d) www.shiksha.com ,IIT, Roorkee
- e) www.blackwellpublishing.com
- f) www.hrpwa.org
- g) www.creativeworld9.com

15. PO-COMPETENCY-CO MAPPING

Semester II	Civil Engineering Drawing (Course Code:4320601)									
Semester II	POs and PSOs									
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledg e	em Analy sis	Design/ develo pment of solutio ns	Tools, Experiment ation &Testing	sustainability & environment	ement	PO 7 Life- long learnin g	PSO 1	PSO 2	PSO 3 (If neede d)
Competency					struction drawing					
					ssion drawings fond bye-laws considered					with
Course Outcomes co a) To Measure										
pressure and determine total hydrostatic	3	2	2	3	-	-	2	-	-	-
pressure for different conditions.										
co b) To acquire knowledge of different types of flow, different types of energy, and different types of equation & theory.	3	2	-	2	-	-	2	-	-	-
co c) To Determine head loss of fluid flow through pipes.	3	2	2	2	2	-	2	-	-	-

GTU - COGC-2021 Curriculum

CO d) TO	o Compute										
dis	scharge by	2	2		2	2		2			
va	rious formulas	3	2	1	2	2	-	2	-	-	-
in	open channels.										

Legend: '3' for high, '2' for medium, '1' for low or '-' for the relevant correlation of each competency, CO, with PO/ PSO

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE <u>GTU Resource Persons</u>

Sr. No.	Name and Designation	Institute	Contact No.	Email
1	Shri Dipesh H. Dalal Lecturer in Civil Engg.	Govt.Poly. for Girls',Ahmedabad	079- 26301581	dhdalal@gmail.com
2	Smt. VaishaliB. Patel Lecturer in Civil Engg.	Govt.Poly.,Ahmedabad	079- 26301285	vaishali.civil@gmail. com
3	Dr. A.K.Patel	Govt.Poly.,Ahmedabad	9825009719	<u>Ashutech.asp@gmai</u> <u>I.com</u>

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-III

Course Title: Computer Aided Drafting

(Course Code: 4330605)

Diploma programme in which this course is offered	Semester in which offered
Civil Engineering, Environmental Engineering	Third

1. RATIONALE

Computer Aided Drafting is invariably used for Civil Engineering Drawing and visual representation before actual construction. With advancement in Building Technology, new features have been introduced in structures. Further structural design has also been modernized. This has further increased the importance of drawing and drafting softwares which help in visualizing the structures thus increasing the understanding. Besides technological development in drafting softwares have made them more user friendly thus making them virtually indispensible. Hence knowledge of Computer Aided Drafting has become even more important skill than before. Civil Engineering Drawing, the language of a Civil Engineer helps him in efficiently representing engineering details like plan, elevation, section, foundation, building elements, etc. for easy understanding of the clients, authorities, etc. Computer Aided Drafting (CA Drafting) helps in easily performing the above task and drastically reducing the time of preparation of the drawings.

Computer Aided Drafting tools like AUTOCAD, REVIT, SKETCHUP have made civil engineering drawing simple, easy to represent details and time saving. Knowledge of above softwares is necessary for increasing employable skills of diploma engineers. Hence, the recent curriculum is framed keeping in mind the above requirements.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competencies:

- Prepare detailed 2D drawing of building components (beam, slab, column and footing), plan, elevation and section drawings required for civil engineering activities using advance tools AutoCAD and basic tools of REVIT software.
- Prepare basic 3D drawing of a small building.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

- CO1 Prepare 2D drawings of building components like beam, slab, column and footing residential &commercial building using CAD.
- CO2 Prepare 2D drawings like Plan, Elevation and Sectional of residential &commercial building using CAD.
- CO3 Preparesimple3D drawing of residential & commercial building using CAD.

CO4 Prepare simple building drawing using REVIT

4. TEACHING AND EXAMINATION SCHEME

Teachi	ching Scheme Total Credits		Examination Scheme					
(In	Hours	s)	(L+T/2+P/2)	Theory	y Marks	Practica	l Marks	Total
L	Т	Р	С	CA*	ESE	СА	ESE	Marks
-	-	4	2	-	-	25	25	50

(*): For this practical only course, 25 marks under the practical CA has two components i.e. the assessment of micro-project, which will be done out of 10 marks and the remaining 15 marks are for the assessment of practical. This is designed to facilitate attainment of COs holistically, as there is no theory ESE.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the sub-components of the COs. Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

S. No.	Practical Outcomes (PrOs)	Unit No.		Approx. Hrs. required		
1	Draw the sectional Elevation and Plan showing Reinforcement details of Beam	1, 2		4		
2	Draw the sectional Elevation and Plan showing Reinforcement details of slab	1, 2		4		
3	Draw the sectional Elevation and Plan showing Reinforcement details of Column footing.	1, 2		4		
4	Drawing Furnished Plan, Elevation and Sectional View of Residential Building having Ground and preferably 1 st floor construction showing title block, legends, schedule of opening; and margins with A3 page settings. Print/ Plot the above drawings using Plot Settings	1, 2		14		
5	Develop a 3D drawing for a 1BHK Building. Print/ Plot the above drawings using Plot Settings.	3, 4		10		
6	Prepare simple building drawings using REVIT					
			Total	56		

<u>Note</u>

- *i.* More *Practical Exercises* can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- *ii. The following are some sample 'Process' and 'Product' related skills(more may be added/deleted depending on the course) that occur in the above listed Practical Exercises of this course required which are embedded in the COs and ultimately the competency..*

S. No. Sample Performance Indicators for the PrOs	
---	--

Weightage in %

For PrOs 2, 5-12, 14 & 15				
1	Use of proper commands	30		
2	Uniformity in Drawing and detailing	20		
3	Accuracy in dimensioning, scaling, placing of drawings and	30		
	text.			
4	Timely completion and submission	5		
5	Answer the questions	10		
6	Attendance & Punctuality	5		
Total		100		

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practicals in all institutions across the state.

S. No.	Equipment Name with Broad Specifications	PrO. No.
1	 Computer system-minimum Intel Core i3 or equivalent processor, 4GB RAM, 500 GB Hard disk, graphics card.* Printer and/or Plotter as per printing requirement LCD Projector 	1 to 6
	*As CAD Softwares are regularly updated, higher configuration of computer system may be required in future.	

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample*Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs and PrOs. More could be added to fulfill the development of this competency.

- a) Work as a team member/ individual.
- b) Work with care and safety.
- c) Work with discipline and responsibility.
- d) Follow ethical practices.

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

Only the major Underpinning Theory is formulated as higher level UOs of *Revised Bloom's taxonomy* in order development of the COs and competency is not missed out by the students and teachers. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
Unit – I	1a.Demonstrate the basics of CAD	1.1 File menu of CAD with New,
Introduction	software and its important	Open, Save, Save as and Close
to CAD	commands	1.2 Basic 2D commands like Line,
	1b.Prepare a simple building	Circle, Ellipse, Multi Line ,Construction
	drawing file using basic draw and	Line, Polyline, Point, Donut, Ellipse,
	modify commands	Polygon, Rectangle, Arc, Erase, Snap,
		Redraw, Regenerate, Zoom, Pan
Unit – II	2a.Explain the applications of Edit	2.1 Modify Properties of Drawing Entity
Demonstratio	commands	2.2 Copy, Move, Rotate, Mirror, Offset,
n of 2D	2b.Modify existing CAD	2.3 Array, Scale, Stretch, Lengthen, Trim
commands in	Drawing	2.4 Extend, Break, Chamfer , Fillet
CAD	2c.Apply advance	2.5 Block, Insert and Explode
CAD	command for edit	2.6 Application of LAYER command in
	/modification of drawing	Civil Engineering 2.7 Layer command with its all sub
	2d. Prepare typical Drawings using Different Layers	commands, Line type, Color
	2e. Develop final Drawings	2.8 Dimension command – linear , aligned,
	with Dimension and Text	arc, length, radius, Diameter, Centre,
	and Hatching	Leader, Baseline and Continuous,
	5	Dimensioning, tolerance, override and
		Dimension updates Text and DTEXT
		commands with Text Style, Hatch command
Unit – III	3a.Use 3D commands	3.1 Units, Elevation, Thickness, UCS
Demonstratio	togenerate3dviewfrom2Ddrawing	and UCS Icon
n of 3D	3b. Prepare 3D Drawings using	3.2 Viewports , Extrude , 3D Solids –
commands in	3D Commands of CAD	Sphere, Box, Cylinder, Cone, Wedge,
CAD	3c.perform rendering/shading on 3D	Interference
CAD	drawing	3.3 3D Surface – Revolved, Tabulated and Ruled Surfaces Hide,
		Render and Shade of 3Ddrawings
Unit– IV	4a.Setup printer, plotter for	4.1 PLAN, ELEVATION and 3D Views
Plot of 2D &	printing of drawings	of Residential and Commercial Building.
3DDrawings	4b.Plot 2D and 3D Civil Engineering	4.2 PLOT and its Sub Command for
SDDrawings	Drawings as per requirement on	Plotting Drawing on A1, A2 and A3 Size
	different scale and sizes	Paper using Printer and /or Plotter
Unit– V	5a. Explain basics of BIM	5.1 Introduction to BIM
Introduction	5b. Demonstrate components of	5.2 Understanding of REVIT UI
to	REVIT UI	5.3 Grid and Level
REVIT/Similar	5c. Prepare simple building	5.4 Model Line
software	drawing using REVIT	5.5 Wall
	5d. Demonstrate Rendering in	5.6 Door & Window
	REVIT	5.7 Floor
	5e. Calculate data from REVIT	5.8 Roof
		5 9 Railing & Stair Case
		5.10 Sheet Creation
		5.11 Import & Export
		5.12 Rendering in Revit
		5.13 Calculate data from Revit Drawings

9. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- d) Expert Lecture/Seminar regarding latest softwares lime Sketch Up, etc related to Computer Aided Drafting may be arranged.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be *individually* undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry.In special situations where groups have to be formed for micro-projects, the number of students in the group should *not exceed three.*

The micro-project could be industry application based, internet-based, workshopbased, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than **16** (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- Draw the Cross Section through Wall
- Draw different types of foundation (any five).
- Draw different types of brick masonry bonds (any five).
- Draw different types of stone masonry (any five).
- Draw different types of doors (elevation) (any five).
- Draw different types of windows (elevation) (any five).
- Draw different types of caissons.
- Draw profile leveling of longitudinal section of road. (Assume requireddata).
- Draw a contour map of 40 m by 40 m area showing minimum 5 contours. (Assume required data).
- Draw the detailed plan for a small school building.
- Draw the detailed plan for a small shopping complex.
- Draw a layout plan of a plot/scheme and its key plan.

13. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication with place, year and ISBN
1	AutoCAD for dummies	Bill Fane	John Wiley & Sons, 2016
2	AutoCAD 2018 3D		Ascent Centre for Technical
	Drawing & Modeling-		Knowledge, 2017
	Student Guide		
3	Mastering AutoCAD 2019	George Omura	Sybex, 2018
	and AutoCAD LT 2019		
4	AutoCAD Workbook for	Shannon R.Kyles	Wiley-Blackwell, 2008
	Architects and Engineers		
5	AutoCAD 2021 Beginning	Munir M.Hamad	Mercury Learning and Information,
	and Intermediate		2020
6	Mastering Autodesk Revit	Robert Yori-	Sybex, 2020
	2020	Marcus Kim,	
		Lance Kirby	

14. SOFTWARE/LEARNING WEBSITES

- a) AutoCAD, REVIT, SKETCH UP
- b) https://www.autodesk.com/education/edusoftware/overview?sorting=featured&filters=individual
- c) https://old.aicte-india.org/bfreedownloadsadesk.php
- d) www.Autodesk.com
- e) https://www.thesourcecad.com/autocad-tutorials/

15. PO-COMPETENCY-CO MAPPING

Semester III		Civil Engineering Drawing (Course Code:4320601)								
	POs and PSOs									
Competency & Course Outcomes	PO 1Basic& Discipline specific knowledg e	em Analy	3Design / develop ment of	g Tools, Experiment	society,	PO 6 Project Manage ment	7Life-	PSO 1	PSO 2	PSO 3 (If neede d)
<u>Competency</u>	•				ng of building cor	•	•	-		0//
	•	 plan, elevation and section drawings required for civil engineering activities using adv tools AutoCAD and basic tools of REVIT software. Prepare basic 3D drawing of a small building. 						anced		
CO 1 Prepare 2D drawings of building components like beam, slab, column and footing residential & commercial building using CAD.	3	1	2	3	2	2	3	-	-	-
CO 2 Prepare 2D drawings like Plan, Elevation and Sectional of residential & commercial building using CAD.	3	2	2	3	3	2	3	-	-	-
CO 3 Prepare simple 3D drawing of residential & commercial building	2	1	2	2	2	1	2	-	-	-

using CAD.									
CO 4 Prepare simple building drawing using REVIT	1	1	2	3	2	1	1		
using REVIT									

Legend: '3' for high,'2' for medium, '1' for low or '-'for the relevant correlation of each competency, CO, with PO/ PSO

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No.	Name and Designation	Institute	ContactNo.	Email
1	Shri K.P. Jasodani	Govt.Polytechnic, Himatnagar	02772-229285	jasodani_kamalkumar1@gtu. edu.in
2	Shri M.L. Patel	R.C. Technical Institute, Ahmedabad	079-27664785	mlpatel504@gmail.com
3	Shri C.B. Patel	Govt.Polytechnic,Ahmedab ad	079-26301285	patel.chig@gmail.com
4	Dr. A.K.Patel	Govt.Polytechnic,Ahmedab ad	9825009719	Ashutech.asp@gmail.com

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Semester – IV

Course Title: Essence of Indian knowledge and Tradition (Course Code: 4340001)

Diploma programme in which this course is offered	Semester in which offered
All branches of Diploma Engineering	4 th Semester

1. RATIONALE:

National education Policy 2020, has given ample emphasis on Indian Knowledge system. The significance of teaching of Indian knowledge and Tradition is very much required as for centuries this great tradition had been trampled under the feet of invaders. Even after Independence, Indian Knowledge System had been neglected and only Western parameters have been considered as standard.

The essence of Indian culture has been carried through centuries only because of its scientific and humanitarian approach. It is the need of the hour that young students learn the significance of the contribution made by Indian Knowledge Systems and contribute to the world with pride and confidence even in the field of Science and technology which had been mastered centuries ago but was perished by invaders. This course will provide an opportunity to the students the hidden secrets of the great heritage of knowledge that existed thousands of years ago in Indian Tradition.

2. COMPETENCY:

1) Study of IKS will enable students to respect and relish the greatness of our tradition. The awareness of IKS will make them feel proud about their own culture.

2) The knowledge of Indian knowledge will enable and empower them with the first hand knowledge of India's great heritage, culture and traditions.

3) This will create a scope and awareness amongst the foreigners regarding India and its contribution to the world.

3. COURSE OUTCOMES

- 1. Students will attain awareness regarding the significance of IKS
- 2. The syllabus will enhance their confidence in Indian traditional knowledge system and enable them to perceive at the problems with Indian perspective
- 3. This will also enable them to analyze the issues on their own and enable them for critical thinking.
- 4. The knowledge about the ancient Indian Scientific traditions will generate more confidence in themselves.
- 5. This will lead them to make research and innovative thinking which can result in global contribution at later stage.

4.TEACHING AND EXAMINATION SCHEMES

Teaching Scheme		Total Credits		Examination Scheme					
(In	(In Hours) (L+T+P/2)		Theory Marks		Practica	Total			
L	Т	Ρ	С	CA	ESE	СА	ESE	Marks	
2	0	0	2	30	70	25	25	150	

5.PRACTICAL / PROJECT :

The student can visit any historical / monumental sights like Adalaj step well or Rani Ki Vav – Patan and study about architectural skills of Indians in past.

Topics:-

- 1. Ancient Indian Astronomy :
 - Development of Astronomy:
 - A) Consideration of Purnima and Amavasya
 - B) Beginning of The New Year- Vasant Ritu- (Vernal Equinox)
 - C) Ancient Indian Calender
 - D) Science Behind "Adhikmaas"
 - E) Uttarayan and Dakshinayan

Knowledge about Constellations / planets / distance between planets etc.

- A) Saptarushi seven Seers- Significant Knowledge of star and constellations
- B) Knowledge of Speed of Light Rigveda(1.50.04)
- C) Distance between Earth and Sun (Hanuman Chalisa)

GTU - COGC-2021 Curriculum

> Advances in Mathematics and Geometry in Ancient India

A) Sulbha- Sutra (Kalpa Sutra) composed by Baudhayana, Manava, Apastamba and Katyayana

B) Contribution of Ancient Rushis to Mathematics

- A)Bodhayana's value of pie
- B) Lilavati
- C) Bhaskaracharya
- D) Arya Bhatt.

2. Town Planning in Ancient India

A)Roads in Ancient India – Uttarpath by Chandra Gupta B)Ancient Indian Trade Routs/ Waterways C)Ship- Building In Ancient India D)Temple Architecture -Nagar Style/ Dravida style/ Vesara style

3. Atomic Theory of by Kanada

- A) Concept of Seven Padartha and Nine Dravyas
- **B**) <u>Theory of Gurutva</u>
- C) <u>Characteristics of Atom</u>

4. Metallurgical Discoveries in Ancient India

- ➢ Lime a Mortar
- Bronze
- $\blacktriangleright \quad \text{Gold & Silver } \land$
- Glass / Iron
- Nagarjuna's Contribution in making Alloys

5. Vimanshastra - Airbourne Vehicles.

- A) References of Vimana- Flying Machines in Rigveda, Mahabharat and Ramayana
- B) BhardwajSutra- Chapter-1 Rasyagnoadhikari

6.REFERENCE BOOKS:

1)History of Science, Arts & Technology By Dr. Shripad Dattatrya Kulkarni, Bhishma Prakashan, Mumbai -1998.

GTU - COGC-2021 Curriculum

2)Introduction to Indian Knowledge System: Concepts and Applications by B. Mahadevan, Vinayak Rajat Bhat, Nagendra Pavana, PHI Learning Pvt. Ltd., Delhi

3)Town Planning in Ancient India by Binode Bihari Dutt, Thacker, Spink & Co.

4) ભારતનો વૈજ્ઞાનિક વારસો લેખક-જે. જે. રાવલ યુનિવર્સિટી ગ્રંથ નિર્માણ બોર્ડ, ગુજરાત રાજ્ય

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU) Semester – IV

Course Title: Contributor Personality Development (Course Code: 4340002)

Diploma programme in which this course is offered	Semester in which offered
All branches of Diploma Engineering	4 th Semester

Type of course: Work-Personality Development

For Year: Pre-final year for all Diploma programs

Rationale: The Contributor Program aims to accomplish the following outcomes in the lives of students-

- Improve the employability of students by giving them the right work ethic and thinking that employers are looking for.
- Build their I-Can attitude and self-confidence for their career.
- Improve their ability to engage positively to handle the challenges in career and workplaces.
- Build long-term and sustainable view of success and career that will help them make sustainable choices in a volatile and changing world of work.
- Widen their choices of career and success, so that they are able to open up more opportunities for themselves and take up unconventional career pathways.
- Awaken their aspiration to develop as Contributors in their organizations and society.

The program is focused on building foundational career values and the self-esteem of students to contribute in today's world of work.

The Contributor Program syllabus has been evolved and fine-tuned over several years, to -

- a) address the changing needs and contemporary challenges being faced by industry and what employers today are looking for in the people they hire.
- b) working extensively with universities and students and an appreciation of their challenges and concerns.
- c) guided by the higher ideas and principles of Practical Vedanta in work.

OVERALL TEACHING AND EXAMINATION SCHEME

FOR ALL DIPLOMA COURSES

Teaching Scheme Total Credits		Examination Scheme						
(In	Hours	s)	(L+T+P/2)	Theory Marks		Practical Marks		Total
L	Т	Р	С	CA	ESE	CA	ESE	Marks
2	0	0	2	30	70	25	25	150

L- Lecture; T- Tutorial/ Teacher Guided Student Activity; P- Practical; C- Credit; ESE- End Semester Examination; PA-Progressive Assessment

Distribution of Theory Marks								
R Level	U Level	A Level	N Level	E Level	C Level			
-	30	30	10	-	-			

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note:

It is the responsibility of the institute heads that marks for PA of theory & ESE and PA of practical for each student are entered online into the GTU Portal at the end of each semester within the dates specified by GTU.

Note:

- 1. This subject is compulsory.
- 2. It will carry 2 credits.

COURSE FORMAT

Class Sessions:

- Students will have to attend 3 hours of discovery-based sessions, to build new models of thinking & capacities for every module. [i.e., total 18 hours of classroom sessions in the semester]
- They will work closely with their peers to discuss and understand these new models of thinking.
- Their learning will be facilitated by trained college faculty.
- They also go through standard end-of-module, live assessments in class via a Student App, for continuous assessment of learning, which will be used for the progressive assessment component.

Project work:

- Students will have to complete projects as part of Practical work. They have one project corresponding to each module. These projects help them apply contributor thinking into their careers and life. These also help them build their confidence to communicate, ability to do systematic research and present their thinking effectively.
- For the successful completion of projects:
 - Students will be given orientation to the project and systematic guidelines on how to conduct the project by their trained college faculty in a project orientation session.
 - The projects will be done in teams and will require research. It may also need field work.
 - o Student teams present their projects in the classroom in project presentation sessions.

COURSE CONTENT:

MODULE		WHAT IS COVERED	Total Hrs.
1	Part 1: Developing self- efficacy and basic inner strength	Who is a Contributor? Students build a vision of who they can become as a 'Contributor' in their career. They gain clarity on expectations from the future workforce, and importance of being a contributor. This enables students to transform their expectation of themselves in their career and future work.	3 hrs Lab Sessions (discovery-based facilitator led)

2		The 'creator approach' to life & challenges In a "caged approach", we see the career environment as full of difficulties and hurdles. We feel powerless or blame our circumstances for not having many opportunities. This makes us fearful of uncertainty and makes us settle for jobs where we remain mediocre. In this topic, students discover the "creator approach" to challenges and situations. This helps them take ownership & responsibility to shape destiny, build a new future, find answers to challenges; and stop being complainers.	Same as above
3		Develop yourself to succeed: The I CAN Approach Students learn to develop an "I CAN" attitude to everything. This is the base that helps them develop a Growth Identity & builds their self-esteem step by step; making them ready to deal with the dynamic demands of the future workplace.	Same as above
4	Part 2: Building ability to make more effective career choices	Achieving Sustainable Success in their career Students discover how to achieve sustainable or lasting success, by making themselves success worthy. Where their focus shifts to building one's "engine of success" rather than being focused on chasing the "fruits of success". This is important, because over a lifetime of work, all people go through ups and downs – where the fruits are not in their control. People who are focused on the fruits of success fall prey to disappointment, loss in motivation, quitting too early, trying to find shortcuts – when fruits don't come. Whereas people focused on building their engine of success continue to contribute steadily, irrespective of whether fruits come or not. This helps them make better choices in life, that leads to steady success & long-term career fulfillment in an uncertain world.	Same as above
5		Career Development Pathways open to us In this topic, students explore a range of diverse "career development models" and the possibilities for contribution that each opens up for them. This helps them open up hidden opportunities that such an environment offers. And free themselves from a herd mentality when making career	Same as above

		choices.	
6		Unleashing our Power to Contribute In this topic, students learn how to expand the contribution possible in any role they play. This helps them take charge of their own career growth & discover their power to contribute in any role or job.	Same as above
Project work		Project Assignments are given corresponding to each of the six topics. These projects require research and field work beyond the classroom that students are expected to do.	Beyond classroom, with student presentations in the class

Reference resources:

A. Basic reference for both students and teachers –

- 1. Student Resources for study comprising of key ideas learnt in the classroom in each topic and additional references to videos, articles etc. from the internet for continued exploration. These resources are made available via the Student App.
- 2. In-class Assessment Quizzes for each of the 6 modules that students do via the Student App.
- 3. Structured classroom presentations that teachers use to conduct classes systematically. This is provided via a digital delivery platform (only for teachers).
- 4. Guides and preparation material to help teachers prepare for the classroom sessions. This is also provided via the digital delivery platform.
- 5. Project Guides and support materials provided via the digital delivery platform and the Student App.

These will be made available by Illumine (www.illumine.in), Knowledge Partner for the Contributor Program.

B. Advanced reference for teachers –

- 1. On Contributors, Srinivas V.; Illumine Ideas, 2011
- 2. Awaken the Contributor Within (Contributor Ethic), Srinivas V.; Illumine Ideas, 2019
- 3. Becoming a Contributor Teacher (Contributor Ethic), Srinivas V.; Illumine Ideas, 2018
- 4. Reclaiming our intentionality: from "victims" to "creators of our destiny" (Design of Life), Srinivas V.; Illumine Ideas, 2016.
- 5. Examining our motives of work: can we ask more out of ourselves? (Design of Life), Srinivas V.; Illumine Ideas, 2016.
- 6. Building a Contributor Ethic in Organizations, Srinivas V.; Illumine Ideas, 2019.
- 7. Enlightened Citizenship and Democracy; Swami Ranganathananda, Bharatiya Vidya Bhavan, 1989
- 8. Eternal Values for a Changing Society Vol I-IV, Swami Ranganathananda; Bharatiya Vidya Bhavan

- 9. Karma Yoga, Swami Vivekananda; Advaita Ashrama
- 10. Six Pillars of Self Esteem, Nathaniel Branden; Bantam, 1995
- 11. Mindset: The New Psychology of Success, Carol S. Dweck; Random House Publishing Group, 2007
- 12. Lasting Contribution: How to Think, Plan, and Act to Accomplish Meaningful Work, Tad Waddington; Agate Publishing, 2007
- 13. Why not? how to use everyday ingenuity to solve problems big and small, Barry Nalebuff, Ian Ayres; Harvard Business School Press, 2003
- 14. The value mindset: returning to the first principles of capitalist enterprise (Ch 8 & 9); Erik Stern, Mike Hutchinson; John Wiley and Sons, 2004
- 15. The Power of Full Engagement: Managing Energy, Not Time, is the Key to High Performance and Personal Renewal, Jim Loehr, Tony Schwartz; Simon and Schuster, 2003
- 16. Responsibility at work: how leading professionals act (or don't act) responsibly, Howard Gardner; John Wiley & Sons, 2007

Course Outcomes:

Sr. No.	CO statement	Marks %
		weightage
Outcom	e of class sessions	
CO-1	Students are able to recognize the work ideal of a Contributor in terms of their motives for working and approach to work. They appreciate the value and importance of becoming Contributors in today's context.	10-12%
CO-2	Students are able to recognize & appreciate a "caged" approach as distinct from a "creator" approach in the way people deal with challenges and situations; and learn ways to develop a creator approach.	10-12%
CO-3	Students are able to recognize an "I Can" approach or way of thinking in situations. They learn how to apply this thinking to systematically develop themselves and their self-confidence in any area they choose.	10-12%
CO-4	Students are able to widen their understanding of success, that will help them make more sustainable career choices.	10-12%
CO-5	Students are able to recognize & appreciate different career development pathways and their value; to open up different career possibilities for themselves.	10-12%
CO-6	Students are able to recognize that any role has the potential for contribution. And they learn how to systematically expand the contributions and impact they can make in any role.	10-12%
Outcom	e of practical /project sessions	
	Students learn to apply the new thinking in the real world context	30%

EXAMINATION PATTERN:

End Semester Examination Pattern:

- 1.0 The final examination will cover all six modules included in the course content.
- 2.0 The examination is largely understanding and application oriented. Thus, a thorough appreciation of the key concepts of the course to recognize contributor thinking and application of the concepts in everyday life & work context, will help students to do well in the examination.
- 3.0 The examination paper will have ~30 questions and is to be completed in 1 ½ hours.

- 4.0 All questions are compulsory.
- 5.0 Pattern of questions
 - There are four sections in the question paper.
 - All questions are in multiple-choice format (MCQ).
 - The questions are in the form of scenarios / situations giving options. The student is expected to choose one option out of the given options.
- 6.0 The total number of marks is **70 marks**. The No. of questions and maximum marks per section is given below:

Section	Type of questions & No. of questions	Marking scheme
Section A	Case with 4 MCQs (with 2 or 3 options each).	2 questions x 3 marks each
	Student has to choose only one option.	2 questions x 2 marks each
		Max. marks = 10 marks
		Min. marks = zero
Section B	10 MCQs (with two valid options each). Student	10 questions x 2 marks each
	has to choose only one option.	Max. marks = 20 marks
		Min. marks = zero
Section C	5 MCQs (with 3 or 4 options each). Student has to	5 questions x 2 marks each
	prioritize/ rank the statements & choose only one	Max. marks = 10 marks
	option that is closest to their ranking or priority-	Min. marks = zero
	combination.	
Section D	10 MCQs (with 3 options each). Student has to	10 questions x 3 marks each
	choose only one option.	Max. marks = 30 marks
		Min. marks = 10 marks

Sample Question Paper Pattern:

Section A

Instructions: This section has a scenario. Read carefully before answering the subsequent questions. There are 4 questions in this section. All questions are compulsory. Each question has 3 or 2 options. Choose ONLY ONE option which you consider the most appropriate option. Read carefully before answering.

Maximum Marks: 10

E-retailer Flipkart has announced that it will use the services of Dabbawalas of Mumbai for delivering goods to customers.

The Dabbawalas have been in the profession of transporting lunch boxes with absolute accuracy for more than 120 years. Their unique delivery system has been smooth, and reliable under all conditions. Their business involves no paper or administrative team. This helps in keeping the costs down.

However the Dabbawalas are not technology savvy which can be a problem for Flipkart.

1. The biggest advantage of this partnership is that...

[3 marks]

- a] ...it will reduce Flipkart's cost of delivery significantly.
- b] ...it is an unusual and beneficial partnership for all concerned.
- c] ...it will give Dabbawalas additional income.
- 2. Suppose a partnership fails, your learning from it would be... [2 marks]
 - a] These things happen, don't think about it but go forward.
 - b] I need to think through more carefully whom to partner with and how we work together.

Section B

Instructions: There are 10 questions in this section. All questions are compulsory. Each question has 2 statements. Select ONLY ONE statement you feel is closest to your thinking and mark it on the answer sheet given to you.

[10 Qs x 2 marks = max. marks 20]

- 3. An astronomer made a discovery of a new planet at a unique location in the galaxy after several years of work. This helped prove and support an already well-established theory in Physics. Will the astronomer be called a Contributor?
 - a] No, not a contributor, as finally his work led to nothing substantial (the theory was already well established).
 - b] Yes, he is a Contributor because he continued for long and didn't give up so that he could make a discovery.
- 4. a] "I won the 'Best Athlete Award' last year. I should practice well enough to win it again this year."
 - b] "I won the 'Best Athlete Award' last year. For this year's sports day, I should practice to improve my stamina and speed."

Section C

Instructions: This section will have 5 questions. All questions are compulsory. Each question has some statements with a unique number (e.g. 1, 2, 3, 4) and 3 or 4 options (e.g. a, b, c, d). Each option is either a combination of statements or a specific order of the statements. Choose ONLY ONE option closest to your thinking and mark it on the answer sheet given to you.

[5 Qs x 2 marks = max. marks 10]

- 5. What makes a project successful? (*Rank in the order of most likely to least likely option*)
 - 1. An inspiring team leader who can delegate jobs to his team.
 - 2. Hardworking team members who complete the tasks which are assigned to them.
 - 3. A team who believes the project should be successful.
 - 4. People who think like a 'team'.
 - a] 4-3-2-1 b] 2-1-4-3 c] 2-1-3-4 d] 4-3-1-2

6. What are the different I CANs required to crack a job interview?

- 1. I CAN learn to articulate my thoughts in a better manner
- 2. I CAN overcome the fear of others judging me
- 3. I CAN train myself to build my stamina
- 4. I CAN think calmly to answer difficult questions
- a] 1, 2, 3 b] 1, 2, 4 c] 1, 3, 4 d] 2, 3, 4

Section D

Instructions: There are 10 questions in this section. All questions are compulsory. Each question has 3 options. Select ONLY ONE option you feel is the most appropriate and mark it on the answer sheet given to you.

[10 Qs x 3 marks = max. marks 30]

- 7. Which is a Contribution to Self, that a football player can make in his role?
 - a] Asking for personalized attention from the coach and better opportunities to prove himself in the team.
 - b] Improving his dribbling and passing techniques and his ability to work in smooth coordination with other players
 - c] Winning more matches and increasing the number of goals scored by him in different matches.
- 8. Vaibhav, a mechanical engineering student, guides his classmates in completing their lab and group project work, gives regular updates on the progress to the teacher and works with everyone so that the journals of the entire class are submitted in time for external evaluation. What roles is Vaibhav playing in his college/class?
 - a] Student leader, friend, role model
 - b] Student, classmate, class representative
 - c] Student, mentor, coordinator, representative of the class, assisting the teacher

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Semester – IV

Course Title: Integrated Personality Development Course (Course Code: 4340003)

Diploma programme in which this course is offered	Semester in which offered	
All branches of Diploma Engineering	4 th Semester	

1. TYPE OF COURSE

Value-based holistic personality development course for university students.

2. RATIONALE

IPDC aims to prepare students for the modern challenges they face in their daily lives. Promoting fortitude in the face of failures, unity amongst family discord, self-discipline amidst distractions, and many more priceless lessons. The course focuses on morality and character development at the core of student growth, to enable students to become self-aware, sincere, and successful in their many roles - as an ambitious student, reliable employee, caring family member, and considerate citizen.

3. COURSE OUTCOMES

- To provide students with a holistic value-based education that will enable them to be successful in their academic, professional, and social lives.
- To give the students the tools to develop effective habits, promote personal growth, and improve their wellbeing, stability, and productivity.
- To allow students to establish a stronger connection with their family through critical thinking and devolvement of qualities such as unity, forgiveness, empathy, and effective communication.
- To provide students with soft skills that complement their hard skills, making them more marketable when entering the workforce.
- To enhance awareness of India's glory and global values, and to create considerate citizens who strive for the betterment of their family, college, workforce, and nation.
- To inspire students to strive for a higher sense of character by learning from role models who have lived principled, disciplined, and value-based lives.

4. TEACHING AND EXAMINATION SCHEME:

Teaching Scheme		Total Credits		Ex	amination S	Scheme		
(In	Hours	5)	(L+T+P/2)	Theory	y Marks	Practica	Marks	Total
L	Т	Р	С	CA	ESE	СА	ESE	Marks
2	0	0	2	30	70	25	25	150

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit, CA - Continuous Assessment; ESE -End Semester Examination.

5. COURSE-CONTENT:

Each lecture can be taken in a continuous two-hour session, or in two separate one-hour sessions. In addition to the core lectures, an induction and concluding lectures are recommended as shown in the below table.

Lecture No.	Module & Subject	Subject Description	Hours			
	IPDC-1 (First Phase/Semester)					
Intro- duction	The Need for Values	Students will learn about the need for values as part of their holistic development to become successful in their many roles - as ambitious students, reliable employees, caring family members, and considerate citizens.	2			
1	Module: Remaking Yourself Subject : Restructuring Yourself	Students learn how self-improvement enables them to secure a bright future for themselves. They will learn 6 powerful thought-processes that can develop their physical, intellectual, emotional, and spiritual quotients.	2			
2	Module: Remaking Yourself Subject : Power of Habit	Students will undergo a study of how habits work, the habits of successful professionals, and the practical techniques that can be used to develop good habits in their life.	2			
3	Module: Learning from Legends Subject : Tendulkar & Tata	Students will learn from the inspirational lives of India's two legends, Sachin Tendulkar and Ratan Tata. They will implement these lessons through relatable case studies.	2			
4	Module: From House to Home Subject : Listening & Understanding	Active listening is an essential part of academic progress and communications. Students will learn to listen with their eyes, ears, mind, and heart.	2			
5	Module: Facing Failures Subject : Welcoming	This lecture enables students to revisit the way in which they approach challenges. Through the study of successful figures	2			

	Challenges	such as Disney, Lincoln and Bachchan, students will learn to face difficulties through a positive perspective.	
6	Module: Facing Failures Subject : Significance of Failures	Failure is a student's daily source of fear, negativity, and depression. Students will be given the constructive skills to understand failure as formative learning experiences.	2
7	Module: My India My Pride Subject : Glorious Past - Part 1	India's ancient Rishis, scholars, and intellectuals have made tremendous contributions to the world, they developed an advanced, sophisticated culture and civilization which began thousands of years ago. Students will learn the importance of studying India's glorious past so that they could develop a strong passion and pride for our nation.	2
8	Module: My India My Pride Subject : Glorious Past - Part 2	Our ancient concepts can be used to seek revolutionary ideas and to generate inspiration. Students will develop a deeper interest in India's Glorious Past – by appreciating the need to read about it, research it, write about it, and share it.	2
9	Module: Learning from Legends Subject : A.P.J. Abdul Kalam	Dr Kalam's inspirational life displayed legendary qualities which apply to students (1) Dare to Dream (2) Work Hard (3) Get Good Guidance (4) Humility (5) Use Your Talents for the Benefit of Others	2
10	Module: Soft Skills Subject : Networking & Leadership	Students are taught the means of building a professional network and developing a leadership attitude.	2
11	Module: Soft Skills Subject : Project Management	Students will learn the secrets of project management through the Akshardham case study. They will then practice these skills through an activity relevant to student life.	2
12	Module: Remaking Yourself Subject : Handling Social Media	Students will learn how social media can become addictive and they will imbibe simple methods to take back control.	2
13	Module: Facing Failures Subject : Power of Faith	Students will learn about the power and necessity of faith in our daily lives.	2
14	Module: From House to Home Subject : Bonding the Family	Students will understand the importance of strong family relationships. They will learn how to overcome the generation gap and connect with their family more.	2

15	Module: Selfless Service Subject : Seva	Students will learn that performing seva is beneficial to one's health, wellbeing, and happiness. It also benefits and inspires others.	
			Ĺ

6. COURSE MATERIAL / MAIN COURSE WORKBOOK:

Workbook will be designed and presented by IPDC Team. These official workbooks would be the course-

material for study of IPDC. These workbooks will solve the purpose of study, submission, viva and exams

for students.

IPDC Workbook-1 (published by Swaminarayan Aksharpith)

7. IPDC REFERENCES:

These are the reference material for the IPDC lectures. This is not compulsory reading for the students as the essential information is contained in the workbook.

Mo dul e No	Module	References
1	Facing Failures	 Thomas Edison's factory burns down, New York Times Archives, Page 1, 10/12/1914 Lincoln Financial Foundation, Abraham Lincoln's "Failures": Critiques, Forgotten Books, 2017 J.K. Rowling Harvard Commencement Speech Harvard University Commencement, 2008 Born Again on the Mountain: A Story of Losing Everything and Finding It Back, <u>Arunima Sinha</u>, Penguin, 2014 Failing Forward: Turning Mistakes Into Stepping Stones for Success, John C. <u>Maxwell</u>, Thomas Nelson, 2007 Steve Jobs: The Exclusive Biography Paperback, <u>Walter Isaacson</u>, Abacus, 2015 Failing Forward: Turning Mistakes Into Stepping Stones for Success, John C.
2	Learning from Legends	 <u>Maxwell</u>, Thomas Nelson, 2007 Chase Your Dreams: My Autobiography, Sachin Tendulkar, Hachette India, 2017 Playing It My Way: My Autobiography, Sachin Tendulkar, Hodder & Stoughton, 2014 The Wit and Wisdom of Ratan Tata, Ratan Tata, Hay House, 2018 The Tata Group: From Torchbearers to Trailblazers, Shashank Shah, Penguin Portfolio, 2018 The Leader Who Had No Title, Robin Sharma, Jaico Publishing House, 2010 In the Joy of Others: A Life-Sketch of Pramukh Swami Maharaj, Mohanlal Patel and BAPS Sadhus, Swaminarayan Aksharpith, 2013

3	My India My Pride	1. Rishis, Mystics, and Heroes of India, Sadhu Mukundcharandas, Swaminarayan Aksharpith, 2011
		2. Physics in Ancient India, <u>Narayan Dongre</u> , <u>Shankar Nene</u> , National Book Trust, 2016
		3. The Rise of Civilization in India and Pakistan, Raymond Allchin, Bridget
		Allchin, Cambridge University Press, 1982
		4. The Āryabhatīya of Āryabhata: An Ancient Indian Work on Mathematics and
		<u>Astronomy</u> (1930), <u>Walter Eugene</u> Clark, University of Chicago Press, reprint,
		Kessinger Publishing, 2006
4	Remaking	1. Power of Habit, Charles Duhigg, Random House Trade Paperbacks, 2014
	Yourself	2. Change Your Habit, Change Your Life, Tom Corley, North Loop Books, 2016
		3. The Seven Habits of Highly Effective People, Stephen Covey, Simon & Schuster, 2013
		4. Seven Habits of Highly Effective Teens, Sean Covey, Simon & Schuster, 2012
		5. Atomic Habits, James Clear, Random House, 2018
		6. How a handful of tech companies control billions of minds every day, Tristan Harris,
		TED Talk, 2017
5	From	1. "What Makes a Good Life? Lessons from the Longest Study on Happiness", R.
	House to	Waldinger, Ted Talks, 2015
	Home	2. Long Walk To Freedom, <u>Nelson Mandela</u> , Back Bay Books, 1995
		3. Outliers, Malcolm Gladwell, Back Bay Books, 2011
6	Soft Skills	1. The 17 Indisputable Laws of Teamwork, John Maxwell, HarperCollins, 2013
		2. Team of Teams: New Rules of Engagement for a Complex World, Stanley
		McChrystal, Portfolio, 2015
		3. Predictably Irrational, Revised and Expanded Edition: The Hidden Forces That Shape
		Our Decisions, <u>Dan Ariely</u> , Harper Perennial, 2010
7	Selfless	1. Open: An Autobiography, Andre Agassi, Vintage, 10 August 2010
	Service	2. The Physiological Power of Altruism [online], James Hamblin, The Atlantic,
		December 30, 2015,
		https://www.theatlantic.com/health/archive/2015/12/altruism-for-a-better-
		body/422280/ [last accessed June 10, 2020]
		3. TBI Blogs: From Entrepreneurs to Doorkeepers, Everybody Serves with Love &
		Warmth at This Ahmedabad Café [online], <u>The</u> People Place Project, The Better
		India, May 29, 2017, <u>https://www.thebetterindia.com/102551/small-way-serve-</u>
		<u>ahmedabad-seva-cafe/</u> , [last accessed June 10, 2020]

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-IV

Course Title: Advanced Surveying

(Course Code: 4340601)

Diploma programme in which this course is offered	Semester in which offered	
Civil Engineering, Environmental Engineering, Mining	4 th Semester	
Engineering		

1. RATIONALE

Surveying is the basic andone of the most studied topics in civil engineering.Survey is used in the preparation of maps which help in the location of hills, valleys, rivers, boundaries, roads, canals and railways. It also helps in setting up plans for roads, railways and other important civil engineering structures. In addition to the instruments used for simple surveying, advanced surveying techniques such as Tachometric survey, Setting out of a curve, Total Station survey, use of G.P.S., D.G.P.S., U.A.V. etc. are essential as the speed and accuracy are in high demand in recent time. Also, these modern equipments use software which in turn encourages paperless work and use of green building materials.

At the diploma level, students are expected to study these aspects so as to develop their understanding, and performance-oriented abilities in order to apply their knowledge in the civil engineering field.

2. COMPETENCY

Thepurpose of this course is to help the student to attain the following industry identified competency through various teaching-learning experiences:

Carry out civil engineering surveys with the use of necessary software to prepare drawings &maps using a theodolite, total station, G.P.S., D.G.P.S., U.A.V., etc.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with this competency are to be developed in the students of display the following COs:

- 1. Carry out a contour survey for undulating/hilly regions using a Tacheometer and prepare contour map.
- 2. Setting out a horizontal curve using a theodolite.
- 3. Carry out traverse survey using total station, import the data in the computer, and preparedrawing using Auto CAD.
- 4. Record and retrieve the data using a Hand-Held GPS
- 5. Give a demonstration of the field procedure of modern surveyingequipments.

Теа	Teaching Scheme (In Hours)		Total Credits	Examination Scheme				
			(L+T/2+P/2)	Theory Marks		Practical Marks		Total Mari
L	Т	Р	С	СА	ESE	СА	ESE	Total Marl
3	-	4	5	30*	70	25	25	150

4. TEACHING AND EXAMINATION SCHEME

(*):Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit, CA - Continuous Assessment; ESE -End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are thesub-components of the COs.Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
1	Determine the constants of a tacheometer.	I	2
2	Determine the distance and R.L. of a point when a line of sight is horizontal.	Ι	2
3	Determine the distance and R.L. of a point when a line of sight is inclined for an angle of elevation.	I	2
4	Determine the distance and R.L. of a point when a line of sight is inclined for an angle of depression.	I	2
5	Carry out the Tacheometry project for 4 to 5 stations for a closed traverse on undulating/hills regions and prepare the drawing sheet.	I	10
6	Determine the elements of a simple circular curve.	II	2
7	Computation of the data for setting out the curve by an offset of long Chord method.	П	2
8	Computation of the data for setting out the curve By Rankine (one theodolite) method.	П	2
9	Carry out the project for setting out a simple horizontal curve by Rankine's methods	11	4
10	Identify the parts of the Total Station.		2
11	Set out the total station on a given station.		2
12	Set out the station by setting up a backsight.		2

13	Measure the horizontal, vertical and deflection Angle by total station.	111	2
14	Store and download the data from a total station in the computer and convert the same into Auto CAD file.	Ш	2
15	Total Station survey: - Carry out the project for a small traverse with 4-5 stations on the ground and prepare the drawing with the required scale.	111	6
16	An overview of Hand-held GPS device	IV	2
17	Record and retrieve the data using a Hand-Held GPS	IV	4
18	Know the uses of Modern Surveying techniques	V	2
19	Demonstration of Recording and Retrieving data collected from Modern Surveying techniques such as DGPS, UAV etc.	V	4
	Total		56

<u>Note</u>

- i. More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry-relevant skills/outcomes to match theCOs.The above table is only a suggestive list.
- ii. The following are some **sample** 'Process' and 'Product' related skills(more may be added/deleted depending on the course)that occur in the above-listed**Practical Exercises**of this course required which are embedded in the COs and ultimately the competency..

S. No.	Sample Performance Indicators for the PrOs	Weightage in %						
	(For PrOs 1 to 15& 17)							
1	Operation and handling of survey instruments	20						
2	Taking observations and recording and storing	30						
3	Computation/Retrieval of survey data and plotting/ Drawing	30						
4	Answer the questions	10						
5	Follow safe practices measures while performing practicals	10						
	Total	100						

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

These major equipments with broad specifications for the PrOsis a guide to procure them by the administrators to usher in uniformity of practical in all institutions across the state.

S. No.	Equipment Name with Broad Specifications	PrO. No.
1	Theodolite/Tacheometer:	01 - 09

	Length of telescope 178 mm, Magnification 25X Effective Aperture 38mm, Field of View 2.6 M at 100M, Short Focus 1.5M, Stadia Ratio 1:100, Stadia Constant 0, Circle Diameter Hz113mm, V100 mm Graduation 20' / 10', Vernier Reading 20" / 10".				
	Total station:				
2	2 Objective Lens Diameter-45mm (1.77 inches), Magnification-30x, Minimum Focus Distance-1.5 m, 1 prism 3,000m,3 prisms 4,000m, Measuring Accuracy-±(2mm + 2ppm x Distance) Mean Squared Error, Accuracy in angle measurement-5", with display panel and keyboard, Reflectorless operation from 30cm to 500m.				
	Hand-Held GPS:				
3	Display size of screen-7 13 cm, Features-Moving map, Routes-50, Way points-1000.	16-17			
4	Modern surveying equipments: (for demonstration only) DGPS&UAV	18-19			

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample*Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned CosandPrOs.More could be added to fulfil the development of this competency.

- Work as a leader/a team member.
- Follow ethical practices.
- Practiceenvironmental friendly methods and processes. (Environment related)

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

Only the major Underpinning Theory isformulated ashigher level UOs of *Revised Bloom's taxonomy* in order development of the COs and competency is not missed out by the students and teachers. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics		
	1a. Explain the principles and various methodologies	1.1	Introduction, Purpose andPrinciples of TacheometricSurveying.	
	involved in techeometry.	1.2	Theory of Stadia Tacheometry, Analytic	

Surveying			Lens andadvantages & disadvantages ofit.
	1b. Calculate R.L. and	1.3	Methods of determining constants of a
	horizontal distance	1 1	Tacheometer
	between object and instruments.	1.4	Methods of Tacheometry (Stadia &Tangential)
			Method of Fixed Hair :
			- When the line of sight is horizontal and
			Staffheld vertically
			- Whenthe line of sight is inclined and
			staffheldvertically
			(Angle of Elevation & Depression)
		1.5	Advantages and disadvantages of
			Tangential method
		1.6	Related examples of Tacheometer constant & Tacheometricmethods
Unit – II	2a. Describe	2.1 2.2	Types of circular curves
Curves	differentelements of curves.	2.2	Definitions and notations Designation of thecurve
curves	2b. Calculate necessarydata	2.3	Relation between Radius and degree of
	required to setting outcurve	2.4	curve
	on field.	2.5	Elements of a simple circular curve
		2.6	Setting out a simple circular curve.
		2.7	Methods of setting out simple circular
			curves
		2.8	Transition curves
			- Requirements and purpose of it.
		2.9	Vertical curves
			Related examples of curves.
Unit – III	3a. Explain the principlesof	3.1	Introductionand basics of Digital
Total Station	total station.	3.2	Theodolite Principles of E.D.M.
Survey	3b. Record data on total	3.3	Introduction and Basics of Total station
Salvey	stationas well as on	5.5	- Parts of Total station
	computer.		- Advantages, disadvantages and uses of
			TotalStation
	3c. Retrieving the data		- Types of Total Station
	andgenerate the drawings		- Advancement in Total Station Technology
	usingapplication software.		- Automatic Target Recognition ATR
		3.4	Surveying using Total Station
			- Flow chart of data collection
		3.5	 Fundamental Parameters of Total Station Precautions to be taken while using Total
		5.5	Station
		3.6	Field equipments
		3.7	Set up of Total Station
		1	

r	1	1	
		3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18	 Centering, Levelling , back-sight, Azimuth Marks Measurement with Total Station Total Station Initial Setting Field Book recording Radial Shooting Total Station Traversing Survey Station description, Occupied Point Entries Data Retrieval Field-Generated Graphics Construction layout using Total Station Overview of Computerized Survey Data System Equipment Maintenance MaintainingBattery Power, Total Station
			Total Survey system errors Sources andhow to avoidthem. Controlling errors
Unit IV Global Positioning System	4a. Applications of GPS in civilEngineering.4b. Retrieving the data and Generatemaps.	4.1 4.2 4.3 4.4 4.5 4.6	Introduction to GPS Maps & types of digitalmap Fundamentalsand uses of GPS GPS Receivers (Hand-Held GPS Receivers) Field procedures of GPS Observations and applicationsin Civil Engineering
Unit V Modern Surveying	5a.Explainthe use of ModernSurveying Instruments.	5.1	Introduction and use of modern surveying equipments such asDifferential Global Positioning System (DGPS),Unmanned Arial Vehicle(UAV).
Techniques	5b.Demonstration of Recording AndRetrievingcollecteddata.	5.2 5.3 5.4 5.5	Field procedures of modern surveying equipments Data Retrieval Understanding GIS and its components Applications of GIS

Note: The UOs need to be formulated at the 'Application Level' and above of Revised Bloom's Taxonomy' to accelerate the attainment of the COs and the competency.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Marks				
No.	Ont The	Hours	RLevel	ULevel	ALevel	Total Marks	
1	Tacheometry Surveying	12	04	04	12	20	

2	Curves	8	02	04	08	14
3	Total Station Survey	10	02	06	08	16
4	Global Positioning System	6	04	02	04	10
5	Modern Surveying	6	04	06	00	10
Techniques						
Total		42	16	22	32	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions assess the attainment of theUOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may varyslightly from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, the following are the suggested studentrelated **co-curricular** activities that can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct the following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Preparea seminar on the relevant topic
- b) Undertake micro projects.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No. 4 means* different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning** but to be assessed using different assessment methods.
- e) With respect to *section No.11*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.

f) Guide students on how to address issues on environmental and sustainability

- g) Expert lecture by a practicing surveyoron modern surveying equipments.
- h) Expert lecture on the latest software used for modern surveying.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-projects are group-based. However, in the fifth and sixth semesters, it should be preferably be **individually** undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should **not exceed three.**

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than **16** (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry orientedCOs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs.Similar micro-projects could be added by the concerned course teacher:

- a) Measure Horizontal and vertical distance of given objects(minimum 02 objects)
- b) Compute Tacheometric constants in the field
- c) Calculation of Elements of a simple circular curve from given data
- d) Use different methods of setting out simple circular curves.
- e) Prepare technical specifications of the Total station.
- f) Find out the height of the tower or tall object by total station.
- g) Carry out small levelling projects with the help of a total station.
- h) Prepare a report on field procedures of GPS.
- i) Stack out waypoints with the help of GPS
- j) Prepare areport on GIS, its components and its application

13. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication with place, year and ISBN		
1	Surveying and Levelling Vol-II	T.P.Kanetkar&S. V.Kulkarni	PunaVidyarthiGrihaPrakashan		
2	SurveyingandLevellingVol- II Dr.B.C.Punmia		Laxmi Publications Pvt.Ltd.		
3	SurveyingandLevellingVol- II	S.S. bhavikatti	WILEY-India		
4	FundamentalsofSurveying	S.K.Roy	PHILearningPvt.Ltd		
5	Surveying and Levelling N NBasak		McGraw Hill Education Pvt. Ltd		
6	A Textbook of Surveying and Levelling	R. Agor	Khanna Publishers		

14. SOFTWARE/LEARNING WEBSITES

- a) <u>https://www.digimat.in/nptel/courses/video/105107121/L01.html</u>
- b) <u>https://www.digimat.in/nptel/courses/video/105107121/L02.html</u>
- c) <u>https://www.digimat.in/nptel/courses/video/105107121/L03.html</u>
- d) <u>https://www.digimat.in/nptel/courses/video/105107121/L04.html</u>
- e) <u>https://www.digimat.in/nptel/courses/video/105107121/L05.html</u>
- f) <u>https://www.digimat.in/nptel/courses/video/105107121/L27.html</u>
- g) https://www.digimat.in/nptel/courses/video/105107121/L28.html
- h) https://www.digimat.in/nptel/courses/video/105107158/L17.html
- i) https://www.digimat.in/nptel/courses/video/105107158/L18.html
- j) https://www.digimat.in/nptel/courses/video/105107158/L20.html
- k) https://www.digimat.in/nptel/courses/video/105107158/L21.html
- https://www.digimat.in/nptel/courses/video/105107158/L23.html
- m) <u>https://www.digimat.in/nptel/courses/video/105107158/L24.html</u>

Note: For more videos students are suggested to visit the website of NPTEL

15. PO-COMPETENCY-CO MAPPING

Semester IV		Advanced Surveying (Course Code:)								
Semester IV		POs and PSOs								
Competency & Course Outcomes	PO 1 Basic & Discipline - knowledg e	PO 2 Problem Analysis	PO 3 Design/ developme nt of solutions	PO 4 Engineering Tools, Experimenta tion &Testing	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Manage ment	PO 7 Life-long learning	PSO 1		PSO 3 (If needed)
Competency	Carry	out civi	l engineeri	ing surveys	with the use	of neces	sary soft	tware t	o prep	are
Course	dra	wings &	maps usin	g a theodol	ite, total stat	tion, G.P.	S., D.G.P	P.S., U./	4.V., et	c.
Outcomes 🕇			-							
CO a) Carry out a contour survey for undulating/ hilly regions using a Tacheometer and prepare contour map.	3	3	2	3	_	3	2	_	_	-
CO b) Setting out a horizontal curve using a theodolite.	3	2	2	2	-	2	2	-	-	-

-	-				-	-				
CO c) Carry out traverse survey using total station, import the data in the computer, and prepare drawing using Auto CAD.	3	2	2	2	2	2	3	-	_	-
CO d) Record										
and retrieve the data using a Hand-Held GPS	2	1	1	2	-	-	1	-	-	-
CO e) Give a demonstration of the field procedure of modern surveying equipments	2	1	1	1	1	-	1	-	-	-

Legend: '3' for high,'2' for medium, '1' for low or '-'for the relevant correlation of each competency, CO, with PO/ PS

17. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No.	Name and Designation	Institute	ContactNo.	Email ID
1	Ketan C.Varmora I/C HOD	Government Polytechnic Kheda	9725335599	kcvarmora@gmail.com
2	Pranav P.Mehta Lecturer	Government Polytechnic Ahmedabad	9904779952	pranavhy@gmail.com
3	H.K.Rana I/C HOD	Government Polytechnic Waghai	9638883777	hkrgp2011@gmail.com

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-IV

Course Title: Soil Engineering (Course Code: 4340602)

Diploma programme in which this course is offered	Semester in which offered
Civil Engineering	4 th Semester

1. RATIONALE

After learning Mechanics of deformable bodies and Hydraulics in 3rd semester, this subject "Soil Engineering" is introduced in 4th semester, as it deals with the natural material "Soil" whose behavior is somewhat intermediate between solids and fluids. Soil Engineering involves study of Soil, its behavior and application as an engineering material. Design of foundation of building, dams, towers, embankments, roads, railways, retaining wall, bridges is mainly governed by characteristics and behavior of Soil, hence this subject is very important for civil engineering students.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Evaluate and interpret test results for selection of proper Soil as a construction material and as a strata for foundation.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with the identified competency are to be developed in the student for the achievement of the following COs:

- a) Identify types of Soil according to mode of deposition and mode of transportation.
- b) Determine the physical and index properties of soil to estimate behaviour and other important engineering properties for given construction activities.
- c) Classify coarse grained and fine grained soil by IS method
- d) Determine Coefficient of permeability and shear parameters of soil and apply results in foundation analysis and other construction activities.
- e) Determine O.M.C. and M.D.D. values of soil and select suitable method of soil stabilization.
- f) Compute bearing capacity of soil and earth pressure and interpret results.

Teachi	ing Sch	Scheme Total Credits Examination Scheme						
(In	(In Hours)		(L+T+P/2)	Theory Marks		Practical Marks		Total
L	Т	Ρ	C	СА	ESE	СА	ESE	Marks
3	0	2	4	30*	70	25	25	150

4. TEACHING AND EXAMINATION SCHEME

(*):Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the subcomponents of the COs. Some of the **PrOs** marked **'*'** are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
1	Determine moisture content of soil by oven drying method	I	02*
2	Determine field density and dry density of soil by Core cutter method	I	02*
3	Determine field density and dry density of soil by Sand replacement method	I	02*
4	Determine specific gravity of soil by pycnometer/density bottle	I	02*
5	Classification of soil by sieve analysis method	II	04*
6	Determine Liquid limit, Plastic limit and Shrinkage limit of soil	III,IV	04*
7	Determine Permeability of soil by constant head method	III,IV	02*
8	Determine Permeability of soil by falling head method	V	02*
9	Determine Shear parameters of soil by Direct Shear test	VI	04*
10	Determine OMC & MDD of soil by standard proctor test [Light compaction Test]	VII	04*
	Total hours		28 Hrs.

<u>Note</u>

i. More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.

ii. The following are some **sample** 'Process' and 'Product' related skills(more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

Sr. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Identify components	10
2	Prepare experimental setup.	20
3	Operate the equipment setup.	20
4	Follow safe practices .	10
5	Record observations correctly.	20
6	Interpret the result and conclude.	20
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practicals in all institutions across the state.

Sr. No.	Equipment Name with Broad Specifications	PrO. No.
1	Assembly of Core cutter for In-situ density determination.	02
2	Assembly of Sand replacement for In-situ density determination.	03
3	Sieve set & sieve shaker for mechanical analysis of soil.	05
4	Standard Proctor test apparatus for OMC & MDD determination of soil.	10
5	Density bottles/ Pycnometer for specific gravity determination.	04
6	Direct shear test apparatus.	09
7	Permeability test apparatus for constant water head.	07
8	Permeability test apparatus for falling water head.	08
9	Casagrande apparatus for Liquid limit determination.	06
10	Shrinkage Limit test apparatus.	06
11	Hot air oven with temperature control	01 to 10
12	Electronic weighing balance.	01 to 10

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs and PrOs. More could be added to fulfill the development of this competency.

- a) Work as a leader/a team member.
- b) Follow safety practices while using equipment.
- c) Realize importance of green energy. (Environment related)

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

i. 'Valuing Level' in 1st year

- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

The major underpinning theory is given below based on the higher level UOs of *Revised Bloom's taxonomy* that are formulated for development of the COs and competency. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at different levels)	· · · · · · · · · · · · · · · · · · ·
Unit – I Overview of Soil Engineering	 1a. Identify the types of soil according to mode of deposition and mode of transportation 1b. Identify structures where soil is used as construction material 1c. Identify structures where soil is used as a strata/foundation to safely bear loads. 1d. Locate the major soil deposits in India. 	 1.1 Definition of Soil, Soil Mechanics, Soil Engineering, Importance of Soil engineering 1.2 History of Soil Engineering 1.3 Soil formation in Geological cycle 1.4 List of Structures where soil is used as construction material 1.5 Types of Soil according to mode of Transportation 1.6 Major Soil deposits of India
Unit – II Physical and Index properties of Soil	 2a. Identify physical and index properties of soil and their relevance with important engineering properties. 2b. Interpret two and three phase of soil from given conditions. 2c. Derive interrelationships among different properties of soil from phase diagrams. 2d. Perform tests for determining properties of soil using relevant IS Code and interpret test results 2e. Calculate physical properties of soil from given data using interrelationships 	 2.1. Soil as a three phase system, assumptions for drawing two phase & three phase diagrams, 2.2. Fundamental definitions of physical properties- Water content, Bulk density, Dry density, Saturated density, Submerged density, Density of solids, Specific gravity-Absolute & Mass specific gravity, void ratio, porosity, Degree of saturation, Air content, Percentage air voids, Relative density 2.3. Derivation of following relations from phase diagrams and numericals on each : 2.3.1 e= n/n-1, n=e/1+e 2.3.2 w×G =e×sr 2.3.3 Yd=Yb/1+w 2.3.5 Ysat= (G+e)Yw/(1+e) 2.3.6 Ysub=(G-1)Yw/(1+e) 2.3.7 Yd= G Yw/1+e 2.4. Methods to determine moisture content of soil. 2.5. Determination of Bulk & Dry density

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at different levels)	
		of soil by Core Cutter method and
		Sand Replacement method.
		2.6. Determination of Specific Gravity of
		soil by pycnometer.
	3a. Use different methods of	3.1 Classification of soil as per grain size by
	Classification.	IS method. Basic criteria of
Unit– III	3b.Interpret the particle size	classification of soils.
Ont-m	distribution curve for given	3.2 Difference between coarse grained
Classification	soil samples.	and fine grained soil on the basis of
of Soil	3c. Analyse fine grained Soil	their size and engineering properties.
	based on Consistency Limits.	Mechanical Analysis of coarse grained
	3d. Classify given soil samples by	soil. Sedimentation analysis of fine
	IS method.	grained soil.
		3.3 Particle size distribution curve. Nature
		of various grading Curves. Coefficients
		of uniformity and curvature.
		3.4 Classification of soil on the basis of
		plasticity. Atterberg's limits of
		consistency: Liquid limit, plastic limit
		and shrinkage limit. Plasticity index, Liquidity Index and Consistency Index.
		3.5 Determination of Liquid limit, Plastic
		limit and Shrinkage limit as per IS.
	4a. Identify the factors affecting	4.1 Definition of permeability, permeable
Unit– IV	the permeability for a given	and impermeable soil, Darcy's law of
Permeability	type of soil sample.	permeability.
and Seepage	4b.Compute coefficient of	4.2 Factors affecting the permeability of
	Permeability for given type of	soil. Coefficient of permeability,
	soil sample.	Difference between flow through pipe
	4c. Interpret the concept of	and flow through soil.
	seepage pressure.	4.3 Laboratory Methods to determine
		Coefficient of Permeability- Constant
		Head Method and Falling Head
		method.
		4.4 Field methods to determine Coefficient
		of Permeability: Pumping-out tests and
		Pumping-in tests.
		4.5 Definition of Seepage and seepage
		pressure. Quick sand condition. Types
		of flow net. Characteristics and
		application of flow net.

Unit	Unit Outcomes (UOs)	Tanics and Sub tanics
Unit	Unit Outcomes (UOs) (4 to 6 UOs at different levels)	Topics and Sub-topics
Unit– V	5a. Apply the principle of	5.1 Concept of compaction and its effect
	Compaction and choose the	on various soil properties like density,
Compaction	method of compaction for	permeability, shear strength & bearing
and	different soils.	capacity.
Stabilization	5b. Differentiate phenomenon of	5.2 Factors affecting compaction like water
of Soil	compaction from	content, types of soil, nature of soil,
	consolidation of soil.	method of compaction, admixtures.
	5c. Determine optimum moisture	5.3 Optimum moisture content (O.M.C)
	content and maximum dry	and maximum dry density (M.D.D.) by
	density of soil in the	IS standard compaction test- Light and
	laboratory.	Heavy compaction test(Proctor Test).
	5d. Suggest suitable method of	Standard compaction curves.
	Soil stabilization for ground	5.4 Method of field compaction. Various
	improvement in a given	compaction equipment, role of O.M.C.
	situation.	in field.
		5.5 Concept and requirements of soil
		stabilization. Different methods of soil
		stabilization–Mechanical soil
		stabilization and Chemical soil
		stabilization (Use of cement, lime, fly
		ash, bitumen). Use of Geo-Synthetic as
		a stabilizing material.
		5.6 Necessity of site investigation and sub
		soil exploration. Types and purpose of
		exploration. Basic field identification
		test of soil.
	6a. Interpret various shear	6.1 Cohesion, Angle of internal friction,
Unit– VI	parameters of soil.	shear strength.
Shear Strength	6b. Compute shear strength of soil for given condition.	6.2 Coulomb's law for shear strength.6.3 Different methods to find shear
of Soil	6c. Identify shear failure of soil in	strength of soil in the laboratory.
	various situations.	Procedure to find shear strength using
	various situations.	Box shear test.
		6.4 Types of soil- C-soil, ø-soil and C-ø soil.
		Mohr's circle method to find shear
		envelope and shear strength
		parameters.
Unit– VII	7a Identify the factors affecting	7.1 Concept of bearing capacity. Types of
Bearing	Bearing Capacity of soil.	Bearing capacity- Ultimate bearing
capacity of	7b Determine bearing capacity of	capacity, Safe bearing capacity, Net
Soil and Earth	different soils.	bearing capacity and Allowable bearing
Pressure	7c Suggest type of foundation	pressure. Influence of water table on
	for the given situation of soil.	bearing capacity.
	7d Calculate earth pressure by	7.2 I.S. method to determine bearing
	Rankine's formula.	capacity of soils. Different theoretical

Unit	Unit Outcomes (UOs) (4 to 6 UOs at different levels)	Topics and Sub-topics
		 methods to determine bearing capacity of soils. Introduction to Terzaghi's analysis. Assumptions and limitations of Terzaghi's theory. Different field methods for determination of bearing capacity – Plate load Test and Standard Penetration Test. 7.3 Different types of footings. Types of shear failure of footings. Methods to improve bearing capacity of soils.
		 7.4 Define Earth Pressure. Active and passive earth pressure for no surcharge condition. Rankine's formula to determine coefficient of earth pressure. 7.5 Liquefaction: Definition, Causes, Effect and Remedy of Liquefaction.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distri	bution o	f Theory	Marks
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
I	Over view of soil engineering	02	02	02	00	04
П	Physical and Index properties of soil	08	02	04	06	12
Ш	Classification of Soil	06	02	02	06	10
IV	Permeability and Seepage	06	02	02	06	10
V	Compaction and Stabilization of Soil	08	02	04	08	14
VI	Shear Strength of Soil	06	02	02	06	10
VII	Bearing Capacity ofSoil and Earth	06	02	02	06	10
	Pressure					
	Total	42	14	20	36	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may slightly vary from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated **co-curricular** activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Collect different photographs of a nearby soil deposit by natural formation.
- b) Collect the photographs of different types of footings/foundations being constructed nearby with their primary details.
- c) Collect different photographs of structural members where compaction of soil is being done before construction.
- d) Collect the photographs of five different types of soil wrt classification of soil.
- e) Collect the information with photographs of structural failure due to issue of soil stability.
- f) Collect the information with photographs of soil improvement by different methods available in field.
- g) Collect the information with photographs of structural members having excessive settlement of soil nearby.
- h) Collect the information with photographs of failure of soil due to liquefaction.
- i) Collect the information with photographs of different geo-synthetics.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No. 4* means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.10*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on environment and sustainability.
- g) Guide students for using data manuals.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semester, the micro-projects are group-based (group of 3 to 5). However, **in the fifth and sixth semesters**, the number of students in the group should **not exceed three**.

The micro-project could be field application based, internet-based, workshop-based, laboratory-based or theory based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The duration of the micro-project should be about **14**-**16** *(fourteen to sixteen) student engagement hours* during the course. The students ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Determine void ratio of soil by performing necessary tests in the laboratory.
- b) Compare specific gravity of fine grained soil, coarse grained soil and Aggregate.
- c) Compare OMC and MDD values of two different types of soil available nearby.
- d) Prepare spreadsheet or computer program to calculate the OMC and MDD of given soil sample by standard compaction method.
- e) Prepare spreadsheet or computer program to determine type of soil using particle size distribution curve and mechanical sieve analysis.
- f) Prepare spreadsheet or computer program to determine Liquid Limit and Plastic Limit of given soil sample.
- g) Compare coefficient of permeability values of two different types of soil available nearby.
- h) Classify the soil from one source by performing necessary tests in the laboratory.
- i) Prepare spreadsheet or computer program to calculate shear parameters of soil by performing direct shear test in the laboratory.
- j) Prepare a working model of liquefaction of soil.
- k) Calculate Bearing Capacity of Soil performing necessary tests in the laboratory.
- I) Prepare and Compare working models of embankment filling with and without geo-synthetics.

13. SUGGESTED LEARNING RESOURCES

Sr. No.	Title of Book	Author	Publication with place, year and ISBN
1	Soil Mechanics and	Dr. B.C.Punamia	Laxmi Publications Pvt. Ltd.
	Foundations		NewDelhi
			ISBN: 81-700-808-19
2	Soil mechanics and	Dr. P.N.Modi	Standard Book House, New Delhi
	Foundation Engineering		ISBN: 978-81-89401-30-6
3	Soil Mechanics and	S.K.Garg	Khanna Publishers, Delhi
	Foundation Engineering		ISBN: 81-7409-104-1
4	Soil Mechanics and	Dr. K.R. Arora	Standard Publishers
	Foundation engineering		ISBN-13: 978-8180141126
5	A Textbook of Soil	Murthy V.N.S.	CBS Publishers & Distributors Pvt.
	Mechanics and		Ltd., New Delhi
	Foundation Engineering		ISBN : 9788123913629

14. SOFTWARE/LEARNING WEBSITES

- a) NPTEL Course :-Soil Mechanics by IIT, Guwahati https://nptel.ac.in/courses/105103097
- b) NCTEL Video series for Soil Mechanics laboratory Tests : https://www.youtube.com/results?search_query=nctel+soil
- c) Virtual Lab by Ministry of Education, Government of India <u>www.vlab.co.in</u>

15. PO-COMPETENCY-CO MAPPING

Semester III		Soil Engineering (Course Code: 4340602) POs					
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge		PO 3 Design/ development of solutions	PO 4 Engineering Tools, Experimentation &Testing	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Management	PO 7 Life-long learning
<u>Competency</u>	Evaluate ar as a strata f			or selection of prop	er soil as a con	struction mater	ial and
Course Outcomes COa) Identify types of Soil according to mode of deposition and mode of transportation.	3	-	_	-	2	_	2
COb) Determine the physical and index properties of soil to estimate behaviour and other important engineering properties for given construction activities.	2	3	-	3	2	2	2
COc) Classify coarse grained and fine grained soil by IS method	2	3	-	3	2	2	2
COd) Determine Coefficient of permeability and shear parameters of soil and apply results in foundation analysis and other construction	2	3	-	3	2	2	2

activitieS.							
COe)Determine O.M.C. and M.D.D. values of soil and select suitable method of soil stabilization.	2	3	_	3	2	2	2
COf) Compute bearing capacity of soil and earth pressure and interpret results	2	3	_	_	2	2	2

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE <u>GTU Resource Persons</u>

Sr. No.	Name and Designation	Institute	Contact No.	Email
1.	Shri P.V. Rayjada, HOD Applied Mechanics	L.E. College (Diploma), Morbi	9824281646	satwikpr@gmail.com
2.	Dr. J.B.Oza, Sr. Lecturer Applied Mechanics	G.P.Rajkot	9429048253	jiteshboza@gmail.com
3.	Ms. Bhruguli H. Gandhi, Sr. Lecturer Applied Mechanics	R.C.T.I, Ahmedabad	9099076555	<u>bhruguli@gmail.com</u>
4.	Shri S.M.Kondhiya, Sr. Lecturer Applied Mechanics	G.P. Rajkot	9825764005	sharadkondhiya@gmail.com
5.	Shri R.R. Makwana, Sr. Lecturer Applied Mechanics	L.E. College (Diploma), Morbi	9824128087	rrm.applied@gmail.com

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-IV

Course Title: Estimating, Costing & Valuation

(Course Code: 4340603)

Diploma programme in which this course is offered	Semester in which offered
Civil Engineering	4 th Semester

1. RATIONALE

Construction industry projects are typically cost intensive. Specifications of the construction items greatly influence the project cost. Further, construction equipment hire charges wherever applicable and labour costs also play a significant role in cost estimation of construction projects. Hence, accurate calculation of quantities of works, proper framing of specifications becomes even more important.

Likewise resale of properties holds a significant market in Real estate industry. Real estate prices historically have always followed an upward trajectory. Predicting the market value of pre-existing property especially in a volatile market is very difficult. Knowledge of valuation and factors affecting valuation of property becomes handy in dealing in pre-existing construction projects. Further there is a large scope of personnel with expertise in valuation in today's times especially from banking credit finance point of view.

Lastly, in recent times, green building concept is need of the times and in trend too. For a diploma civil engineer, basic knowledge of costs of green building related construction items will be very useful. This course provides the necessary knowledge and skills in developing the competency in the areas mentioned above in professional manner.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

- Prepare the quantities, cost estimate and rate analysis of civil engineering works.
- Illustrate factors affecting valuation of property.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

- a) Select the modes of measurements for different items of works.
- b) Prepare detailed estimate of a civil engineering works.
- c) Justify the rate for given items of work using rate analysis techniques.
- d) Illustrate the factors affecting the value of property and rent fixation.
- e) Prepare rate analysis of construction items involving green building materials.

4. TEACHING AND EXAMINATION SCHEME

Teachi	ing Scł	neme	Total Credits	Examination Scheme				
(In	Hours	s)	(L+T/2+P/2)	Theory Marks Practical Marks Tot			Total	
L	Т	Р	С	СА	ESE	СА	ESE	Marks
3	-	4	5	30*	70	25	25	150

(*):Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are thesub-components of the COs.Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
1	Prepare the check list of items to be executed with units for detailed estimate of the given structure from the given drawing.	I	2
2	Prepare a comparative report on market rates and rates as per SOR (forbasic materials, labour wages, hire charges of tools & equipment. At least 10 items of each.)	IV	2*
3	List of various items to be provided to learn the modes of measurements according to prevailing IS	I	2*
4	Draft detailed Specification for any eight construction items.	II	4*
5	Estimate in detail for load bearing single floor residential building		8*
6	Estimate in detail for RCC beam	III	4*
7	Estimate in detail for RCC column		4*
8	Estimate in detail for RCC footing	III	4*
9	Estimate in detail for RCC lintel with weather shed	III	4*
10	Estimate in detail for RCC retaining wall	III	4*
11	Estimate in detail for RCC culverts	III	4
12	Estimate in detail for earthwork for road works using all four methods.		6*
13	Calculate the reinforcement quantities from the given set of drawings for a room size of 3 m X 4 m with bar bending schedule (footing, column, beam, lintel with weather shed , slab)		2*
14	Prepare the rate analysis for any five construction items.	IV	4*
15	Solve at least 10 examples related to various form of value, depreciation, loan amount, annual rent, capitalized value, year purchase, etc.	V	4*
16	Use the MS excel to prepare detailed estimate of a Septic Tank		2

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
	well.		
	Total		56

<u>Note</u>

- *i.* More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- *ii. The following are some sample 'Process' and 'Product' related skills(more may be added/deleted depending on the course)that occur in the above listed Practical Exercises of this course required which are embedded in the COs and ultimately the competency.*

S. No.	Sample Performance Indicators for the PrOs	Weightage in %				
	For PrOs 5 to 12					
1	Calculation of quantities	40				
2	Preparing measurement sheet	30				
3	Preparing Abstract sheet	10				
4	Submission of report in time	10				
5	Neatness in work and drawings	10				
	Total	100				

S. No.	Sample Performance Indicators for the PrOs	Weightage in %					
	For PrOs1 to 4 and 13 to 15						
1	Initiative of work allotted	10					
2	Neatness in work	10					
3	Answer the question related to exercises	30					
4	Followed formula and methods sequentially	30					
5	Timely completion and submission of given work	10					
6	Attendance & Punctuality	10					
	Total	100					

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

These major equipments with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practical in all institutions across the state.

S. No.	Equipment Name with Broad Specifications	PrO.No.
1	Computer system (An computer system with basic configuration)	16

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs and PrOs. More could be added to fulfil the development of this competency.

- a) Work as a leader/a team member.
- b) Follow ethical practices.
- c) Practice environmental friendly methods and processes. (Environment related)

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

Only the major Underpinning Theory isformulated ashigher level UOs of *Revised Bloom's taxonomy* in order development of the COs and competency is not missed out by the students and teachers. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics				
	(4 to 6 UOs at Application and					
	above level)					
Unit – I	1a. Describe the terminologies	1.1. Estimating and Costing — definition,				
Basics of	related to estimating and costing;	purpose and related terminologies				
Estimating	types of estimates.	like: provisional sum, prime cost,				
& Costing	1b. Illustrate the role of estimator.	spots item, day work, administrative				
	1c.Select the mode	approval and technical sanction of				
	ofmeasurements for givenitems of	civil works, etc.				
	work as per IS code	1.2. Types of estimates - Approximate				
	1d. Apply the rules of deduction as					
	per IS code for calculating the					
	quantities of a structure.	Estimator.				
		1.4. Modes of measurement,				
		measurement units, Rules for				
		deduction in Masonry work,				
		Plastering and Pointing and Painting				
		work of different items of work as				
		per IS code.				
Unit – II	2a.Describe the Importance, types	2.1. Importance of specifications				
Specificatio	and principles of specifications	2.2. Types of specification				
ns of civil	2b. Write detail specifications of	2.3. Principle of writing specification				
engineering	basic constructions items	2.4. Detailed specifications of different				
works		construction items: Excavation,				
		cement concrete, Brick masonary,				
		R.C.C. Work, Plastering Work,				
		Painting, Flooring etc.				
Unit– III	3a. State the various methods of	3.1. Methods of detailed estimation:				
Detailed	detailed estimation	Individual wall method (Long wall-				
Estimate of	3b. Prepare Bar bending schedule	short wall), centre-line method				

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at Application and	
	above level)	
civil engineering works	 3c. Prepare estimate of quantities for different civil construction works using different methods of estimation. 3d. Prepare abstract of estimated cost. 3e. Calculate the earthwork quantity for the given civil engineering works 	 3.2. Steel requirement for footing, column, beam, Lintel, weather shade and slab 3.3. Bar bending schedule 3.4. Detailed estimation of a. Two rooms b. RCC footings, Column, beams, slab, lintel with weather shade c. RCC retaining wall and culvert 3.5. Estimate of earthwork quantities for roads/canal by: a. Mid-sectional area method b. Mean sectional area method c. Prismoidal method d. Trapezoidal method
Unit– IV Rate Analysis	 4a. Explain Basic terminologies related to rate analysis. 4b. State the factors affecting task work 4c. Describe importance and use of SOR. 4d. Prepare the rate analysis of various types of work 4e. Select suitable type of construction item based on their rate analysis comparison. 	 4.1. Rate Analysis: Definition, purpose, importance and factors affecting. 4.2. Lead (Standard and Extra), lift, overhead charges, water charges and contractor's profit 4.3. Task work- Definition, factors affecting, types. Task work of different skilled labours for different items. 4.4. Importance and use Schedule of Rates (SOR) 4.5. Categories of labours, their daily wages as per SOR, types and number of labours for different items of work 4.6. Preparing rate analysis of different items of work 4.6. Preparing rate analysis of different items of work-Earth work in excavation, PCC,RCC work in (column, beam, lintel, slab), brick masonry, Vitrified tile flooring, plastering, pointing, white washing, painting with stiff paint
Unit– V Valuation	 5a. Differentiate between cost, price and value 5b. Differentiate between depreciation and obsolescence 5c. Describe different forms of value 5d. Illustrate the factors affecting 	 5.1 Cost, Price and Value 5.2 Types of property and Objects of valuation 5.3 Depreciation and Obsolescence 5.4 Different forms of Value 5.5 Valuation tables and Valuation methods for property and land

Unit	Unit Outcomes (UOs)	Topics and Sub-topics			
Unit		Topics and Sub-topics			
	(4 to 6 UOs at Application and				
	above level)				
	the value of property.	5.6 Types of rents and fixing standard			
	5e. Calculate rents forthe property				
	using different methods.	5.7 Numerical of valuation and rent			
	-	fixation			
Unit– VI	6a. Describe green building				
Rate	concept	6.2. Green building material			
analysis of	6b. Select appropriate green	6.3. Use of Green building material in			
Green-	building material for apt item.	Construction items			
Building	6c. Prepare rate analysis of	6.4. Rate analysis of following items			
items	construction items involving green	using green building material:			
	building materials	a. Plain cement concrete using			
		fly ash			
		b. Distempering with 1st			
		quality Acrylic distemper			
		having low VOC(Volatile			
		Organic Compounds)			
		c. Brick work with clay fly ash			
		bricks			
		d. Fly ash as filling material			
		e. Thermal insulation of			
		roofing with exposed			
		polystyrene			

Note: The UOs need to be formulated at the 'Application Level' and above of Revised Bloom's Taxonomy' to accelerate the attainment of the COs and the competency.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R	U	Α	Total
			Level	Level		Marks
I	Basics of Estimating & costing	4	4	3	-	7
Ш	Specifications of civil engineering works	6	2	2	3	7
	Detailed Estimateof civil engineering works	16	4	3	21	28
IV	Rate Analysis of civil engineering works	6	-	3	4	7
V	Valuation	8	2	4	8	14
VI	Rate analysis of Green-Building items	2	4	3	-	7
	Total	42	16	18	36	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy)

Note: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions assess the attainment of theUOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may varyslightly from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated **co-curricular** activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Prepare seminar on relevant topic
- b) Collect current DSR from PWD and prepare report on it.
- c) Undertake micro project.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No. 4* means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.11*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on environ and sustainability
- g) Expert lecture by practicing valuer on Valuation techniques, methods and criteria of any property.
- h) Expert lecture on latest software for Estimating and costing

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be *individually* undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should *not exceed three.*

The micro-project could be industry application based, internet-based, workshopbased, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than **16** (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Prepare detailed estimate of any load bearing structure using available software.
- b) Prepare cost estimate for dismantling of plaster, flooring, walls and doors and windows of one room load bearing structure using latest SOR
- c) Prepare estimate for Renovation of an existing building (any five items).
- d) Prepare cost estimate for waterproofing of given size existing bathroom using any one prevalent material and methods of water proofing.
- e) Prepare the report on the salient provisions made in IS:1200 with special reference to load bearing structure.
- f) Prepare valuation report of own/any house as per prevalent jantri.
- g) Prepare detailed estimate of W.B.M.Road of one kilometre length from the given drawing
- h) Prepare detailed estimate of C.C. Road of one kilometre length from the given drawing

S. No.	Title of Book	Author	Publication with place, year and ISBN
1	Estimating and Costing in	B.N.Dutta	UBS Publishers Distributor Pvt. Ltd.
	Civil Engg.		New Delhi
			ISBN:9788174767295
2	Estimating and Costing in	S.C.Rangwala	Charotar Publishing House PVT. LTD.,
	Civil Engg.		Anand (Gujrat) Pin 388001
			ISBN: 9789385039058
3	Estimating and Costing	G.S.Birdie	DhanpatRai Publishing Company(P)
			Ltd.NewDelhi-110002
			ISBN : 9789384378134
4	Estimating and costing,	M. Chakraborti	MonojitChakraborti, Kolkata (2006)
	specification andvaluation		ISBN-10: 818530436X
	in civilengineering		ISBN-13: 9788185304366
5	Civil Engineering Contracts	B.S.Patil	Orient Longman, Mumbai, Ed.2010
	and Estimates		ISBN: 9788173715594, 8173715599
6	Estimating and Costing	Prof. V.N. Vazirani	Khanna Publishers
		and Prof. S.P.	ISBN-10 : 8174091270
		Chandola	ISBN-13 : 978-8174091277
7	CPWD SOR (2012)	CPWD	Published under the Authority of
			Director General, CPWD, New Delhi

13. SUGGESTED LEARNING RESOURCES

14. SOFTWARE/LEARNING WEBSITES

- a) www.ensoftindia.com
- b) www.newtonindia.com
- c) www.estimator.com

d) www.cpwd.gov.in > Publication

15. PO-COMPETENCY-CO MAPPING

Semester IV	ESTIMATING, COSTING & VALUATION(Course Code:)									
		POs and PSOs								
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledg e	em Analy	Design/ develop	Tools, Experiment	PO 5 Engineering practices for society, sustainability & environment	Project Manage	Life-	PSO 1	PSO 2	PSO 3 (If neede d)
<u>Competency</u>	 Prepare the quantities, cost estimate and rate analysis of civil engineering works. Illustrate factors affecting valuation of property. 									
CO a) Select the modes of measurements for different items of works.	3	-	-	-	-	-	-	-	-	-
CO b)Prepare detailed estimate of a civil engineering works.	2	3	3	1	2	3	2	3	2	-
CO c) Justify the rate for given items of work using rate analysis techniques.	1	1	2	2	2	1	1	1	2	-
CO d)Illustrate the factors affecting the value of property and rent fixation	2	3	2	-	1	-	2	3	2	-
CO e)Prepare rate analysis of construction items involving green building materials	1	1	2	2	3	1	1	1	2	-

Legend: '3' for high, '2' for medium, '1' for low or '-' for the relevant correlation of each competency, CO, with PO/ PSO

17. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No.	Name and Designation	Institute	Contact No.	Email
1	Dr. A.K. Patel	G.P. Ahmedabad	079-26301285	ashutech.asp@gmail.co m
2	Shri M.L. Patel	G.P. Himatnagar	02772-229285	mlpatel504@gmail.com
3	Smt. M.A. Milisia	G.P. Kheda	9558066245	margee.milisia@gmail.c om
4	Shri K.P. Jasodani	G.P. Himatnagar	02772-229285	jasodani_kamalkumar1 @gtu.edu.in
5				

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-IV

Course Title: Basic Transportation Engineering (Course Code: 4340604)

Diploma programme in which this course is offered	Semester in which offered		
Civil Engineering	4 th Semester		

1. RATIONALE

Economy of the nation is directly driven by movement of the people and goods effectively and efficiently. Moreover, In India population blast has made it mandatory to explore the quick and economical mode of transportation. Transportation is classified in general as Road transportation, Railway, Airway and Waterways. Out of all the available modes, water transportation is the cheapest one but it takes much more time; On the contrary, air ways provide quickest transport at costlier rates. Road transportation is easiest, flexible and most convenient mode of transportation for people and goods. Therefore, this course is designed to enrich students with knowledge about all the modes of transportation with the emphasis to road construction and maintenance to confidently execute construction, operation and maintenance as a part of their jobs in field.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competencies:

- To supervise construction and maintenance of roads, railways, bridges, airways, docks and harbour.
- To carry out testing of materials used for road construction.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

- a) Explain different modes of transportation and its effectiveness in terms of economy.
- b) Implement various types of road construction work with different tests of road materials.
- c) Maintain different types of drainage, bridges and its components.
- d) Maintain railway track and its components.
- e) Explain the function of harbours, docks and airways.

4. TEACHING AND EXAMINATION SCHEME

Teachi	ing Sch	neme	Total Credits	Examination Scheme				
(In	Hours	s)	(L+T/ 2+P/ 2)	Theory Marks Practical Marks Total				
L	Т	Р	С	CA*	ESE	CA ESE		Marks
3	-	2	4	30	70	25	25	150

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be

taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/ Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the sub-components of the COs. Some of the **PrOs** marked **'*'** are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

S. No.	Practical Outcomes (PrOs)	Unit No.		Approx. Hrs. required
1	Draw the sketches showing standard cross section of NH/ SH, MDR/ ODR in embankment and cutting also draw road junction, Road curve and widening.	Ι		Home* assignment
2	Conduct Flakiness index test and Elongation index test on the aggregate.	II		04*
3	Conduct Los Angeles abrasion test on the aggregate.	П		02*
4	Conduct aggregate crushing test.	II		02*
5	Conduct aggregate Impact test.	П		02*
6	Conduct California Bearing Ratio Test	II		02
7	Conduct Softening Point test on Bitumen.	II		02*
8	Conduct Penetration test on Bitumen.	II		02*
9	Conduct Flash and Fire Point test on Bitumen.	II		02*
10	Conduct Ductility test on Bitumen.	II		02
11	Visit the site at which construction of flexible/ Rigid pavement is undergoing to have the knowhow of construction of sub-base and / or base and / or surfacing coat as well as provision of drainage and prepare a report of it.	11,111		04*
12	Visit the constructed road for visual inspection to identify defects and suggest remedial measures.	,		04
13	Draw neat sketches of Diamond crossing, Double slip crossing.	IV		02*
14	Prepare a visit report to a nearby Railway Station to visually observe fixtures, fasteners, track, slippers etc. and Junction/ Yard if any.	IV		04*
15	Draw sketches of layout of airport with brief description.	V		02*
16	Visit to nearby airport and prepare a report on types of runway and taxiway.	V		04
			Total	28

<u>Note</u>

i. More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/ outcomes to match the COs. The above table is only a suggestive list.

ii. The following are some **sample** 'Process' and 'Product' related skills (more may be added/ deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency..

S. No.	Sample Performance Indicators for the PrOs	Weightage in %			
	For PrOs 2, 3, 4, 5,6,7,8,9,10				
1	Preparation of experimental set up	10			
2	Setting and operation	20			
3	Safety measures	20			
4	Observations and Recording	10			
5	Interpretation of result and Conclusion	20			
6	Answer to sample questions	10			
7	Submission of report in time	10			
	Total	100			

S. No.	Sample Performance Indicators for the PrOs	Weightage in %			
For PrOs 1,13,15					
1	Neatness, Cleanness on drawing sheet	10			
2	Uniformity in Drawing and line work	10			
3	Creating given drawing	40			
4	Dimensioning the given drawing and writing text	20			
5	Answer the question	10			
6	Submission of drawing in time	10			
	Total	100			

S. No.	Sample Performance Indicators for the PrOs	Weightage in %			
For PrOs 11,12,14,16					
1	Discipline	10			
2	Involvement at construction site	20			
3	Data collection at site	20			
4	Organization of report	20			
5	Answer the question	10			
6	Timely submission of report	20			
	Total	100			

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practical's in all institutions across the state.

S. No.	Equipment Name with Broad Specifications	PrO. No.
1	-Thickness gauge containing openings for aggregate sizes 63, 50,	02
	40,31.5, 25,20,16,12.5,10 & 6.3mm as per IS:2386(Part I)-1963.	
	-Length gauge containing openings for aggregate sizes 63, 50,	
	40,31.5, 25.20,16,12.5,10 & 6.3mm as per IS:2386(Part I)-1963.	

2	Compression testing machine-2000 kN capacity.	04
3	IS sieve set (sizes- 80 mm, 40 mm, 20 mm, 12.5mm,10 mm, 4.75 mm, 2.36 mm,1.18 mm, 600 μ , 300 μ . 150 μ and pan), sieve shaker with adaptors.	04,05,06
4	Los Angeles abrasion testing machine.	03
5	Crushing mould, measuring cylinder with plunger.	04
6	Impact testing machine.	05
7	California Bearing Ratio Test Apparatus.	06
8	Ring and Ball test apparatus (Hot plate 160mm dia. with magnetic stirrer, brass ring, steel ball and glass vessel 600ml and glass thermometer +80°c. Standard Penetrometer with penetration needle 100gm weight, container 55mm dia. and 53mm ht. as per IS:1203.	07
9	Standard Penetrometer with penetration needle 100gm weight, Container 55mm dia and 53mm ht. as per IS 1203.Water bath maintain (25°±0.1 °C), Thermometer range 0-44 °C.	08
10	Pensky Marten's Flash and Fire Point test apparatus 100x200x240mm with measurement range 0-95 as per IS:1209- 1953. Thermometer range 0-200 °C.	09
11	Ductility Testing Machine with ductility mould and base plate.	10
12	Weighing Balance.	For All

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs and PrOs. More could be added to fulfill the development of this competency.

- a) Work as a team member/ individual.
- b) Follow ethical practices.
- c) Follow safe practice on site/ lab.
- d) Practice good housekeeping.
- e) Maintain tools and equipment.

The ADOs are best developed through the laboratory/ field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

Only the major Underpinning Theory is formulated as higher level UOs of *Revised Bloom's taxonomy* in order development of the COs and competency is not missed out by the students and teachers. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
Unit – I Introduction	Unit Outcomes (UOs)1a. Discuss various modes of transportation.1b. Interpretthe various components of a road section.1c. Describethe 	 Topics and Sub-topics 1.1 Modes of transportation. 1.2 Importance & Classification of roads, various terms used in road geometry. 1.3 Requirements of good roads and its advantages. 1.4 Importance of railways, role of civil engineer in construction and maintenance of railway. 1.5 Elements of harbor and their function. 1.6 Classification and types of Harbours based on their utility and location. 1.7 Airport classifications. 1.8 Air transport authorities, air transport activities.
Unit – II Road Transportati on	 2a. Describe road geometry. 2b. Describe the basic requirement of road alignment. 2c. Explain various types of tests on road materials. 2d. Describe various types of road construction methods. 2e. Explain various types of failures and maintenance of road. 	 2.1 Road geometry, Transition curve and Road Gradient, types of Pavement and Soil Stabilization. 2.2 Road alignment, Factors affecting the alignment, their types and its Importance. 2.3 Materials used in road Construction. 2.4 Various tests on Aggregate and bitumen. 2.5 Construction of Flexible and Rigid Pavement. 2.6 Types of Failures in roads. 2.7 Maintenance of roads and its components.
Unit – III Drainage system and Bridges	 3a. Explain importance of drainage and its maintenance. 3b. Discuss the function of various parts of bridge. 3c. Explain requirement of an ideal bridge. 3d. Carry out the maintenance Report. 	 3.1 Importance of drainage. 3.2 Methods of Surface and Sub-surface drainage. 3.3 Maintenance of drainage system. 3.4 Component of Bridge and its function. 3.5 Requirement of an ideal bridge. 3.6 Classification and types of bridge. 3.7 Factor affecting the selection of Bridge site and Scour, Afflux, Runoff, Economic Span, Clearance, Freeboard etc. 3.8 Maintenance of Bridges and its components.
Unit– IV Permanent	4a. Describe the basic parts of railway track and its functions.4b. Interpret the Joints and Gauge.	4.1 Typical cross section of various permanent ways as per IRS.4.2 Function of Various Components.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
ways	 4c. Interpret basic knowledge of points and Crossing. 4d. Discuss the function of various yards. 4e. Explain requirement of track Maintenance. 	 4.3 Method of fixing the rails with slipper. 4.4 Railway gauge, its types and uniformity of gauge. 4.5 Function of Rail joints. 4.6 Function of point and crossing. 4.7 Factors affecting point and crossing. 4.8 Components of Turn outs and types of crossing. 4.9 Classification of Yards. 4.10 Function of Various Yards. 4.11 Requirement of Track Maintenance. 4.12 Daily and periodical Maintenance. 4.13 Maintenance of Alignment, Drainage, Track Material and its components, Point and crossing and level crossing.
Unit– V Water Transportati on and Airway	 5a. Describe Harbour Classification and terms used in Harbour. 5b. Describe the natural phenomenon and site investigation. 5c. Describe various types of berthing structures. 5d. Explain Docks Dry dock, Wet dock, Entrances, Entrance lock and size, Break water. 5e. Describe Fenders, Mooring and Dredging. 5f. Explain aircraft components and its function. 5g. Describe Regional planning. 5h. Describe the requirements of an ideal airport layout. 	 5.1 Classification and types of Harbours based on their utility and location. 5.2 Growth of ports in India, Requirements of good harbour, Element of harbour and their function. 5.3 Wind characteristics, Wind rose, Tide, Tide forces and theories, types of currents. 5.4 Hydrographic and Topographic Survey, Site selection for Harbour 5.5 General aspects of selection for berthing structures, Piers, Wharf, Quay wall, Jetty, Dolphins, trestle, Moles and mooring accessories. 5.6 Construction of Dock wall, classification of Break water and construction method of Break water wall. 5.7 Necessity for Fenders, types of fenders, mooring system and types of dredger. 5.8 Aircraft components and their functions. 5.9 Location and planning aspects of various airport elements.

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
1	Introduction	06	04	04	02	10
П	Road Transportation		02	06	12	20
Ш	III Drainage system and Bridges		02	06	06	14
IV	Permanent ways		04	06	04	14
V Water Transportation and Airway		06	04	04	04	12
	Total	42	16	26	28	70

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/ setters to formulate test items/ questions assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary slightly from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/ record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Collect the details of all types of existing NE, NH and SH constructed and under construction across the country.
- b) Collect samples of alternative Green material for road construction and prepare a report.
- c) Visit the crowded area i.e. city/ town/ village and note down the traffic control devices to suggest the possible action for smooth traffic.
- d) Collect the sample of drawings and documents required for road project from R & B office.
- e) Visit the nearby road construction site and collect the sample information of various materials for road construction in different layers.
- f) Visit the nearby bridge site and inspect all components of it.
- g) Visit nearby railway station for collect information about cross section of rail components, arrangements of station yard, layout of railway station.
- h) Visit to nearby airport and prepare a report.
- i) Collect the information of different codes related to Airport design.
- j) Prepare a report depicting summarized procedure of Land Acquisition for any Transportation project.
- k) Prepare a Proposal exploring connectivity to unconnected Habitations as part of a poverty reduction strategy of Govt. of India under PMGSY.
- I) Visit nearby port site and collect the information about layout and its port components.
- m) Undertake micro-project.
- n) Give seminar on any relevant topic.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/ sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No. 4* means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/ sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.10*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on environment and sustainability.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/ her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be *individually* undertaken to build up the skill and confidence in every student to become problem solver so that s/ he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should *not exceed three.*

The micro-project could be industry application based, internet-based, workshopbased, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than **16** (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Collect the details of all types of existing NE, NH and SH across the country and prepare a report on it.
- b) Collect the details of different types of bridges with its components and prepare a report on it.
- c) Prepare a model of different types of interchanges in roadway.
- d) Collect the information of failure in flexible and rigid pavements.
- e) Inspect the nearby road to enumerate the defects (if any) and prepare the report suggesting the remedial measures.
- f) Develop the 2D and 3D photographic model of pavement construction nearby site.
- g) Develop the model of urban road showing the surface and sub-surface drainage system.
- h) Collect information on latest technology used for maintenance of urban roads.
- Green Road Approach in Rural Road Construction for the Sustainable Development of India.

j) Prepare a report on green highway and practice of green highway.

- k) Develop the 2D and 3D model of rail components and layout of a railway station and yard.
- I) Prepare a model/ prototype of different types of crossing in Railways.
- m) Develop the models of different gauge used in Railway.
- n) Collect the information of defects in railway track and suggesting the remedial measures for ensuring its stability.
- o) Prepare a model of airport with all landing and take-off markings.
- p) Prepare a model of artificial port with all facilities.

13. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication with place, year and ISBN
1	Highway Engineering	Khanna S.K, Justo, C.E G and	New Chand and Brothers, Roorkee, 2010. ISBN 978-8185240800.
		Veeraragavan,A.	
2	Road, Railway, Bridge and Tunnel Engineering.	Birdi, Ahuja,	Standard Book House, New Delhi, March 2010, ISBN: 978-8189401337.
3	Road, Railway, Bridge & Tunnel Engineering	B L Gupta	Standard Publishers. Delhi
4	Traffic Engineering and Transport Planning	Kadiyali,L.R	Khanna Publishers, New Delhi, 2008, ISBN:978-8174092205
5	Principles, Practice and Design of Highway Engineering	Sharma, S.K	S. Chand Publication, New Delhi, 2012, ISBN: 9788121901314
6	Laboratory Manual in Highway Engineering	Duggal, Ajay K. and Puri, V.P	New Age International (P) Limited, Publishers, New Delhi, 2010, ISBN: 9788122403107.
7	Transportation Engineering Vol. I & II	V N Vazirani& S P Chaondola	Khanna Publishers. Delhi
8	Element of Bridge Tunnel and Railway Engineering	S P Bindra K Bindra	DhanpatRai& Sons Delhi
9	Dock and Harbour Engineering	H P Oza G H Oza	Charotar Publishing House, Anand
10	Harbour, Dock and Tunnel Engineering	R. Shrinivasan	Charotar Publishing House, Anand
11	Airport Engineering: Planning and Design	Subhash C. Saxena	CBS Publisher
12	Airport Engineering	Rangwala	Charotar Publishing House, Anand

14. SOFTWARE/ LEARNING WEBSITES

- a) www.nptel.iitm.ac.in
- b) <u>https://www.youtube.com/watch?v=9HZE6DNfF5U&t=3s</u>
- c) <u>https://www.youtube.com/watch?v=-yBXI4z70mI</u>
- d) https://www.youtube.com/watch?v=TE8zYxUJHt0
- e) https://www.khanacademy.org/

- f) <u>https://www.youtube.com/watch?v=37WMS483T7Y</u>
- g) <u>https://onlinepubs.trb.org/onlinepubs/millennium/00014.pdf</u>
- h) <u>www.airports.deerns.com</u>

15. PO-COMPETENCY-CO MAPPING

Semester III	Ba	asic 1	Fransp	ortation	Engineering	g (Cou	rse Co	de: <mark></mark>)	
Semester III		POs and PSOs								
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledg e	Probl em Analy sis	Design/ develop ment of solution	Engineering Tools, Experiment	society,	Project Manage	Life-			PSO 3 (If neede d)
<u>Competency</u>					enance of roads, ra d for road construe		oridges, a	irways, doo	ks and harb	oour.
Course Outcomes CO a) Explain different modes of transportation and its effectiveness in terms of economy.	3	-	-	-	-	-	2			
CO b) Implement the various types of road construction work with different tests on road material.	3	2	2	2	2	2	2			
CO c) Maintain different types of drainage, bridges and its components.	3	2	2	-	2	-	2			
CO d) Maintain railway track and its components.	3	2	2	-	2	2	2			
CO e) Explain the function of harbours, docks and airways.	3	-	-	-	2	-	2			

Legend: '3' for high, '2' for medium, '1' for low or '-' for the relevant correlation of each competency, CO, with PO/ PSO

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No.	Name and Designation	Institute	Contact No.	Email
1	Shri Darshan V. Patel	Govt.Poly., Ahmedabad	079-26301285	darshan.2228@gmail.com
2	Shri Munaf M. Jagadu	Govt.Poly., Ahmedabad	079-26301285	mjagadu@gmail.com
3	Shri Chirag B. Patel	Govt.Poly., Ahmedabad	079-26301285	patel.chig@gmail.com

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-V

Course Title: Entrepreneurship & Start-ups

(Course Code: 4300021)

Diploma programmer in which this course is offered	Semester in which offered
All Branches of Diploma Engineering	5 th Semester

1. RATIONALE

Entrepreneurs have significant impact on our country's current developing economy. The social expectations towards engineering professionals are certainly emerging as job creators especially with the thrust given to "Make in India" and "Vocal for Local" campaigns. Startup India is a well-known flagship initiative of the Government of India, intended to catalyze startup culture and build a strong and inclusive ecosystem for innovation and entrepreneurship. The last 6 years have witnessed tremendous growth of start-ups i.e. from 733 in 2016-17 to 14000 in 2021-22. This course focuses on the basic roles, skills and functions of entrepreneurship with special attention to startup. The course is directed to help students to enhance capabilities in the field of managing the given task as well as to understand peripheral influencing aspects for starting a new business. It will certainly help students to think in a direction to establish a small industry /start-up and develop /validate it using fundamental know how.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Establish a small enterprise /start-up validate it and make it scalable.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with the identified competency are to be developed in the student for the achievement of the following COs:

Upon completion of the course, the student will be able to demonstrate knowledge of the following topics:

- 1) Understanding the dynamic role of entrepreneurship and Startups by Acquiring Entrepreneurial spirit and resourcefulness, quality, competency, and motivation
- 2) Identify a Business Idea and implement it
- 3) Select suitable Management practices like leadership and Ownership, resource institutes
- 4) Overview of Support Agencies and Incubators
- 5) Building Project Proposal & knowing CSR , Ethics, Ex-Im, & Exit strategies

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme	me Total Credits Examination Scheme			
(In Hours)	(L+T+P/2)	Theory Marks	Practical	Total Marks

						М	arks	
L	Т	Р	С	СА	ESE	СА	ESE	
3	0	0	3	30*	70	0	0	100

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED Soft PRACTICAL EXERCISES (During Theory)

The entrepreneurial or start-up journey begins by readying for your future dream from college projects and pursuing the same beyond college hours also. It is encouraged to go through COs and identify traits and search for various state and national agencies for your entrepreneurship / start-up journey and convert the same into successful product in market.

The following practical outcomes (SPrOs) are the sub-components of the Course Outcomes (COs). Some of the **SPrOs** marked **'*'** are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

<u>Note</u>

- *i.* Though the course does not contain any Practical work, a few **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The below table is only a suggestive list.
- ii. The following are some **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

Sr. No.	Sample Performance Indicators for the PrOs	Weightage in %		
1	Entrepreneur Traits and Behavior Modelling	30		
2	Various State and Central Entrepreneurship	30		
	Promotional Schemes and Start-up Policies			
3	Business Model for a Startup and study of Unicorns*	40		
	Total	100		

6. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the abovementioned COs and PrOs. More could be added to fulfill the development of this course competency.

- a. Work as a leader/a team member (while doing a micro-project).
- b. Model behavioral practices of an entrepreneur while planning for an enterprise
- c. Practice ethics and consider methods/ processes that reduce waste and/or possibly conserve environment in designing a new business till it's commercialization.

The ADOs are best developed through the laboratory/field-based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year-Planning
- ii. 'Organization Level' in 2nd year-Model Development
- iii. 'Characterization Level' in 3rd year-Make it Scalable

7. UNDERPINNING THEORY

The major underpinning theory is given below based on the higher level UOs of *Revised Bloom's taxonomy* that are formulated for development of the COs and competency. If required, more such UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Major LearningOutcomes (in cognitive domain)		Topics and Sub-topics
to Entrepreneu rship and	 1b) Discuss characteristics and functions of entrepreneurship. 1c) Identify different types of Entrepreneurships 1d) Compare the concepts entrepreneurand intrapreneur and find out the motivation behind it 1e) Distinguish between entrepreneur and managers 1f) Identify 7-M Resources 	1. 2. 3. 4. 5. 6. 7. 8. 9.	Definition, Traits of an entrepreneur, Functions of Entrepreneurship - Job Creation, Innovation, Inspiration, Economic Development Types of Entrepreneurship Motivation for Intrapreneurship Types of Business Structures, Similarities and differences between entrepreneurs and managers. 7-M Resources Micro, Small, Medium Enterprise/ MSME - Industry Registration Process Startup India, Standup India and SSIP Gujarat & Startup registration process

	Da) Finding Ideas and making an	1	Discovering ideas and visualizing the
2) Business	2a) Finding Ideas and making an	1.	business with Activity map
Ideas and	activity map		1.1 Idea Generation
their	2 h) Develop the plane foreresting		1.2 Product Identification
implement	2b) Develop the plans forcreating	2.	Business Plan- The Marketing Plan and
ation (Idea	and starting the business		Financial Plan/ Sources of Capital
to Start-up)		3.	Business opportunity identification and
	2c) To identify business using the		evaluation
	ideation canvas and the business	4.	Market research
	model canvas		4.1.1. Questionnaire design
			4.1.2.Sampling
	2d) To know market research		4.1.3. Market survey
	related terms		4.1.4. Data analysis & interpretation
		5.	Marketing Mix (4Ps- product, price,
	2e) To know market mix related		promotion place)
	terms		5.1.1.Identifying the target market
			5.1.2. Competition evaluation and
	2f) Learn Product related		Strategy adoption
	terminologies		5.1.3. Market Segmentation
			5.1.4. Marketing, Advertising and
	2g) Emphasize on Innovation		Branding
			5.1.5. Digital Marketing
	2h) Explain concept of Risk and		5.1.6.B2B, E-commerce and GeM
	SWOT	6.	Product Terms- PLC, Mortality Curve
			and New product Development Steps,
			Inventory, Supply Chain Management
		7.	Importance and concept of Innovation, Sources and Process
		8.	Risk analysis and mitigation by SWOT
			Analysis
3) Management	3a) Explain the concept and	1.	Industry, Commerce and Business
Practices	differences between industry,	2.	Types of ownership in the
	commerce and business.		organization -Definition,
	3b) Describe various types of		Characteristics, Merits & Demerits
	ownerships in the organization.	3.	Different Leadership Models
	3c) Explain different types of	4.	Functions of Management- Merits &
	leadership models.		Demerits
	3d) Analyze the nature and		4.1 Planning
	importance of various functions of		4.2 Company's Organization Structure
	management		4.3 Directing
	3e) Discuss Financial organization		4.4 Controlling
	Management		4.5 Staffing- Recruitment and
	3f) Distinguish	_	management of talent.
	management and administration	5. c	Financial organization and management
		6.	Differences between Management
			and Administration

1) Support	4a) Identify support agencies and	1.	State & National Level Support
4) Support		1.	
Agencies and	current promotional schemes for		agencies and Current Promotional
Incubators	enterprise and startups	_	Schemes for new Enterprise
		2.	Start-up Incubation and modalities
	4b) Advocacy to investor	3.	Communication of Ideas to potential
			investors – Investor Pitch
	4c) To Explain various Legal Issues	4.	Legal Issues
			4.1. Contracts
			4.2. Copyrights
			4.3. Insurance
			4.4. IPR
			4.5. Licensing
			4.6. Patents
			4.7. Trade Secrets
			4.8. Trademarks
5) Project	5a) To work on the development	1	. Project Planning
Proposal &	of a project proposal		i. Project planning and report
Exit strategies			ii. Feasibility study
Exit Strategies	5b) Describe social responsibility		iii. Project cost estimation
	and relate with economic		iv. Breakeven point,
	Performance.		v. Return on investment and Return
			on sales
	5c) Explain managerialethics	2	
			Economic performance
	5d) To know Ex-Im Policies	3	
	Suf To know Ex III T oncies	4	
		5	•
	5e) Identify suitable strategies of	6	
	succession and harvesting	0	

8. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN

Unit	Unit	Teaching	Distribution of Theory Marks			
No.	Title	Hours	R Level	U Level	A Level	Total Marks
I	Introduction to Entrepreneurship and Start – Ups	08	4	6	2	12
11	Business Ideas and their implementation (Idea to Startup)		6	4	4	14
	Management Practices	12	6	8	8	22
IV	Support Agencies and	08	4	4	4	12

GTU - COGC-2021 Curriculum

	Incubators						
V	Project Proposal strategies	& Exit	06	2	4	4	10
	Total		42	22	26	22	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist students for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may slightly vary from above table.

9. SUGGESTED STUDENT ACTIVITIES

Other than the classroom learning, following are the suggested student-related **co-curricular** activities which can be undertaken to accelerate the attainment of the various outcomes in this course. Students should make a portfolio i.e. perform at least FIVE from following list of activities individually or in group (not more than 2). They should prepare reports of about 2-5 pages for each activity and collect/ record physical evidence for their portfolio which may be useful for their placement interviews:

- i. Develop two products from household waste (attach photographs).
- ii. Download product development and innovative films from internet.
- iii. Prepare a collage for "Traits of successful entrepreneurs."/ "Motivation & Charms of Entrepreneurship"
- iv. Invite entrepreneurs, industry officials, bankers for interaction. Interview at least four entrepreneurs or businessman and identify
- v. Identify your hobbies and interests and convert them into business idea.
- vi. Mock Business Model- Choose a product and design a unique selling preposition, brand name, logo, advertisement (print, radio, and television), jingle, packaging, and labeling for it.
- vii. Develop your own website. Share your strengths and weakness on it. Declare your time bound goals and monitor them on the website.
- viii. Choose any product/ advertisement and analyze its good and bad points/ cost sheet/ supply chain etc. (individuals should select different ads)
- ix. Compare schemes for entrepreneurship promotion of any bank.
- x. Visit industrial exhibitions, trade fairs and observe nitty-gritty of business. Get news of Vibrant Gujarat Events. (Upcoming in Jan 2024)
- xi. Open a savings account and build your own capital.
- xii. Arrange a visit to a Mall, observe products, supply chain management and prepare report.
- xiii. Organize industrial visit and suggest modifications for process improvement. Conduct a market survey for a product /project before visit. In the visit collect data on machinery specifications, price, output/hour, power consumption, manpower requirement, wages, raw material requirement, specification, price, competitor's product price, features, dealer commissions, marketing mix etc. Make a detailed report at the end of the visit.
- xiv. Select a social cause, set objectives, plan and work for its accomplishment. Find details about some famous NGOs
- xv. Present Own Dream Start-up story as Seminar OR Analyze 2 products from Shark Tank program.

10. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/subtopics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No. 4 means* different types of teaching methods that is to be employed by teachers to develop the outcomes.
- d) Show animation/video related to course content.
- e) Various Apps related to subject topics/ sub-topics
- f) Other Common instructions as under
 - 1) Instructors should emphasize more on exemplary and deductive learning.
 - 2) Students should learn to recognize, create, shape opportunities, and lead teams forproviding economic-social value to society.
 - 3) Business simulations should be used to enhance behavioral traits of successfulintrapreneurs and entrepreneurs amongst students.
 - 4) Emphasis should be on creating entrepreneurial society rather than only setting upof enterprise.
 - 5) They must be encouraged to surf on net and collect as much information aspossible.
 - 6) Each student should complete minimum ten activities from the suggested list. Minimum possible guidance should be given for the suggested activities.
 - 7) Students should be promoted to use creative ideas, pool their own resources, finishtheir presentation, communication and team skills.
 - 8) Alumni should be frequently invited for experience sharing, guiding and rewarding students.
 - 9) Display must be arranged for models, collages, business plans and othercontributions so that they motivate others.
 - 10) You may show video/animation film / presentation slides to demonstrate variousmanagement functions, traits of entrepreneur etc.
 - 11)Arrange a visit to nearby venture capital firm.
 - 12) Give 1 Mini project and 1 project report for future business to all the students.
 - 13) The following pedagogical tools will be used to teach this course:
 - a) Lectures and Discussions
 - b) Role Playing
 - c) Assignments and Presentations
 - d) Case Analysis
 - e) Quiz on Management and Entrepreneurship
 - g) Mimic/ narrate examples from world's leading businessmen among the students.
 - h) Guide students on how to address issues on environment and sustainability

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-projects are group-based (group of 3 to 5). However, **in the fifth and sixth semesters**, the number of students in the group should **not exceed three**.

The micro-project could be industry application based, internet-based, workshop-based, laboratorybased or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain a dated work diary consisting of individual contributions in the project work and give a seminar presentation of it before submission. The duration of the guidance for micro project should be about **6-8** (*six to eight*) *student engagement hours* during the theory/ course. The students ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects/ practical exercise is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

(It can be a Seminar with bound /hand written notes/ ppts of individual students OR a product/ service portfolio)

- 1) Entrepreneur Traits and Behavior Modelling
- 2) Various State and Central Entrepreneurship Promotional Schemes and Start-up Policies
- 3) Business Model for a Startup and study of Unicorns
- 4) Make your own Product / Service portfolio/ Proposal with USP, logo, advertisement (print, radio, and television), jingle, packaging, labeling and branding for it.

Sr. No	Title of Book	Author	Publication with place, year and ISBN	
1	Entrepreneurship in Action	Coulter	PHI 2nd Edition	
2	Entrepreneurship Development	E. Gordon & K. Natarajan	Himalaya	
3	Entrepreneurship	Robert D. Hisrich & Mathew J. Manimala	McGraw Hill Education; ISBN 978-1259001635	
4	Entrepreneurial Development	S S Khanka	S Chand & Company; ISBN: 978-8121918015	
5	Entrepreneurship Development and Management	A. K. Singh	Jain Book Agency (JBA) publishes, New Delhi	
6	Entrepreneurship Development& Management	R.K. Singal	S K Kataria and Sons; ISBN: 978-8189757007	
7	Small Scale Industries and Entrepreneurship	Vasant Desai	Himalaya 2008	
8	Entrepreneurship	Roy Rajeev	Oxford University Press; ISBN: 978-0198072638	
9	Industrial Engineering and Management	O.P.Khanna	Dhanpat Rai and Sons, Delhi	
10	Industrial Organization and Management	Tara Chand	NemChand and Brothers; Roorkee	
11	Industrial Management and Entrepreneurship	V. K. Sharma.	Scientific Publishers, New Delhi	
12	Entrepreneurship Developmentand Small Business Enterprise	Poornima M Charantimath	Pearson Education; ISBN: 978-8131759196	
13	Entrepreneurship Development	S Anil kumar	NEW AGE Intern. Pvt Ltd; ISBN: 978-8122414349	

13. SUGGESTED LEARNING RESOURCES

	1	1	
14	The Startup Owner's	Steve Blank and Bob	K & S Ranch
	Manual: The Step-by-Step	Dorf	ISBN – 978-0984999392
	Guide for Building a Great		
	Company		
15	The Lean Startup: How	Eric Ries	Penguin UK
	Today's Entrepreneurs Use		ISBN - 978-0670921607
	Continuous Innovation to		
	Create Radically Successful		
	Businesses		
16	Demand: Creating What	Adrian J. Slywotzky with	Headline Book Publishing
	People Love Before They	Karl Weber	ISBN – 978-0755388974
	Know They Want It		
17	The Innovator's Dilemma: The	Clayton M. Christensen	Harvardbusiness ISBN: 978-
	Revolutionary Book That Will		142219602
	Change the Way You Do		
	Business		
18	How to write a business plan,	Brian Finch	2nd edition, 2007, Kogan
			Page India Pvt. Ltd.
	Advance Reading		
19	HBR - Creating business plan	-	20-minute manager series,
			2014.
20	HBR – Creating business plan	-	Expert solution to everyday
			challenges, 2007.

14. SOFTWARE/LEARNING WEBSITES

[A] List of Software/Learning Websites:

Sr. No.	Topic Key Word	Link
1	MoCl	https://www.india.gov.in/website-ministry- commerce-and-industry
2	MSME	1)https://msme.gov.in/ 2) https://www.msmex.in/learn/government- schemes-for-startups-and-msmes-in-india/
3	Start-up, Stand-up India & SSIP Gujarat	 <u>1) https://www.startupindia.gov.in/</u> <u>2) https://www.standupmitra.in</u> <u>3) https://udyamimitra.in/page/standup-india-loans</u> <u>4) https://www.ssipgujarat.in/</u>
4	Make in India	https://www.makeinindia.com/
5	Atmanirbhar Bharat Abhiyan Vocal for Local	https://indiancc.mygov.in > uploads > 2021/08
6	Skill India	https://skillindia.gov.in
7	MSDE	https://www.msde.gov.in/
8	Vibrant Gujarat	https://www.vibrantgujarat.com/
9	NABARD	www.nabard.com
10	PAN	https://www.onlineservices.nsdl.com/paam/endUs erRegisterContact.html
11	l-hub	https://ihubgujarat.in
12	GSTIN	https://reg.gst.gov.in/registration

GTU - COGC-2021 Curriculum

13	IEC Code	https://www.dgft.gov.in/CP
14	Mudra	https://www.mudra.org.in/
15	Export-Import	http://niryatbandhu.iift.ac.in/exim/
16	NSIC	https://www.nsic.co.in/
17	DIC	<u>https://ic.gujarat.gov.in/dic -contact.aspx -District</u> <u>Industries Centre</u>
18	EDI	https://www.ediindia.org/
19	CED	https://ced.gujarat.gov.in/home
20	NIESBUD	https://www.niesbud.nic.in/
21	Start-up Talky	<u>https://startuptalky.com/list-of-government-</u> initiatives-for-startups/
22	Invest India	https://www.investindia.gov.in/startup-india-hub
23	SAAC	https://www.saccindia.org/india/startups.html?utm source=google&utm_medium=cpc&gclid=EAIaIQo bChMIutLQ4dfW_wIVeppmAh1cOAAIEAMYASAAEgI JO_D_BwE
24	Action for India	https://actionforindia.org/afi-activity-accelerator- programs.html?gclid=EAIaIQobChMIutLQ4dfW_wIV eppmAh1cOAAIEAMYAiAAEgLVGvD_BwE
25	Indian Chamber of Commerce	https://www.indianchamber.org/
26	FICCI	https://www.ficci.in/api/home
27	GCCI	https://www.gujaratchamber.org/

[B] Some Films (To be seen on Sundays/holidays by students on their own, not to be shown in polytechnics in any case)

- i. Any Body Can Dance (2013)
- ii. Corporate (2006)
- iii. Do Duni Char (2010)
- iv. Guru (2007)
- v. Oh My God (2013)
- vi. Pirates of Silicon Valley (1999)
- vii. The Pursuit of Happiness (2006)
- viii. Rocket Singh (2010)
 - ix. Start-up.com (2001)
 - x. The Social Network (2010)
- xi. Wall Street (1987)
- xii. Band Baja Barat (2010)
- xiii. You've Got Mail (1998)
- xiv. Steve Jobs (2015)
- xv. Chef (2014)
- xvi. "Office Space (1999)
- xvii. Erin Brockovich (2000)
- xviii. The Founder (2016)

15. PO-COMPETENCY-CO MAPPING:

Semester	V
----------	---

	(Course Code: 4300021)						
		POs					
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge	PO 2 Problem Analysis	PO 3 Design / develo pment of solutio n	PO4 Engineering Tools, Experiment ation & Testing	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Managem ent	PO 7 Life-long learning
<u>Competency</u>					otimally to e		
	enterp	rise or s	tart-up,	validate it	t and make	it scalab	le.
CO1-Understanding the dynamic role of entrepreneurship and Startups by Acquiring Entrepreneurial spirit and resourcefulness, quality, competency, and motivation	3	1	2	-	-	2	2
CO2- Identify a Business Idea and implement it	3	2	2	1	1	3	3
CO3-Select suitable Management practices like leadership and Ownership, resource institutes	3	-	1	1	2	2	3
CO4- Overview of Support Agencies and Incubators	2	3	2	2	1	2	2
CO5- Building Project Proposal & knowing CSR, Ethics, Ex-Im, & Exit strategies	3	2	2W	1	1	3	3

Legend: '**3'** for high, '**2**' for medium, '**1'** for low and '-' for no correlation of each CO with PO.

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No	Name and Designation	Institute	Contact No.	Email
1.	Mr. Ujjval V Buch (MBA)	G.P.Ahmedabad	9825346922	uvbuch@gmail.com
2.	Dr. Satya Acharya	EDI, Bhat.	7600050606	<u>satya@ediindia.org</u>

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester –V

Course Title: Concrete Technology

(Course Code: 4350601)

Diploma programme in which this course is offered	Semester in which offered
Civil Engineering	Fifth Semester

1. RATIONALE

After learning Construction material and technology in 3rd semester, this subject "Concrete Technology" is introduced in 5th semester. Concrete is the most widely used man-made construction material in the world and is second only to water as the most utilized substance on the planet. It is the material of choice where strength, impermeability, durability, performance, fire resistance and abrasion resistance are required. It plays an important role in nation building through infrastructure and private building construction. The knowledge of concrete and its properties in the plastic condition and in hardened condition are highly important in order to make Civil Engineering structure safe and serviceable. This course focuses on students' acquisition of knowledge, skills & practices in concrete works and also focuses on the recent advances in the field of concrete technology with emphasis on quality control of concrete.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Prepare concrete of required strength and other specifications with quality control measures.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with the identified competency are to be developed in the student for the achievement of the following COs:

- a) Select suitable concrete materials for different site conditions and required concrete works.
- b) Prepare concrete of required specifications under different conditions.
- c) Check the quality of concrete.
- d) Design concrete mix proportions for required specification.
- e) Prepare special concrete using relevant admixture and concreting materials.
- f) Apply appropriate repairs and retrofitting techniques for concrete structures.

4. TEACHING AND EXAMINATION SCHEME					
Teaching Scheme	Total Credits	Examination Scheme			

(In Hours)		(L+T+P/2)	Theory Marks		Practica	l Marks	Total Marks	
L	T	Р	С	СА	ESE	CA ESE		
3	0	2	4	30*	70	25	25	150

(*):Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the subcomponents of the COs. Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
1	Determine Fineness (with sieve) and Soundness of cement.	I	02*
2	Determine compressive strength of cement.	I	02*
3	Determine Flakiness and Elongation index of coarse aggregate	I	02*
4	Determine Impact, Crushing and Abrasion value of coarse aggregate	Ι	04*
5	Determine specific gravity of fine and coarse aggregate	I	02*
6	Determine grading zone of fine aggregate	I	02*
7	Determine suitable proportion of all-in-aggregate as per grading limits	I	02*
8	Measure workability of concrete by slump test and compaction factor test.	II	02*
9	Determine compressive strength of concrete specimen.		02*
10	Determine tensile strength of Concrete specimen (cylinder and beam specimen)		02*
11	Non Destructive Test on concrete - Rebound Hammer		02
12	Design concrete mix proportions as per IS: 10262, guidelines	III	04*
	Total hours		28 Hrs.

<u>Note</u>

i. More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.

ii. The following are some **sample** 'Process' and 'Product' related skills(more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

Sr. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Identify components	10
2	Prepare experimental setup.	20
3	Operate the equipment setup.	20
4	Follow safe practices .	10
5	Record observations correctly	20
6	Interpret the result and conclude.	20
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practicals in all institutions across the state.

Sr. No.	Equipment Name with Broad Specifications	PrO. No.
1	Le- Chatelier test apparatus and other relevant assembly	01
2	Assembly of compressive strength of cement determination along with a cement cube vibrating machine.	02
3	Thickness gauge with other relevant assembly	03
4	Elongation gauge with other relevant assembly	03
5	Aggregate impact testing machine	04
6	Aggregate crushing test apparatus	04
7	Los Angeles aggregate abrasion testing machine	04
8	Density bottles/ Pycnometer for specific gravity determination.	05
9	Slump cone test apparatus	08
10	Compaction factor test apparatus	08
11	Compression testing machine	2,4,9 and 10
12	Rebound hammer	11
13	Tools and Containers for mixing of concrete mixture	8 to 10 and 12
14	Concrete mixture and other required equipments for mixing	8 to 10 and 12
15	Vibrating table for concrete moulds	9,10 and 12
16	Electronic weighing balance, Different size concrete moulds, Gauging Trowel, Shovel, Sieve set, Small and big Containers etc	1 to 12

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs and PrOs. More could be added to fulfill the development of this competency.

- a) Work as a leader/a team member.
- b) Follow safety practices while using equipment.

c) Realize importance of green energy. (Environment related)

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

The major underpinning theory is given below based on the higher level UOs of *Revised Bloom's taxonomy* that are formulated for development of the COs and competency. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs) (4 to 6 UOs at different levels)	Topics and Sub-topics
Unit – I Cement, Aggregates and Water	 1a. Determine Physical Properties of Cement. 1b. Select suitable type of cement as per site condition. 1c. Determine Physical properties of Aggregate. 1d. Determine Quality of water to be used for making concrete at site. 	 1.1 History of cement invention. 1.2 Overview of Cement Manufacturing. 1.3 Bogue's compounds and its functions 1.4 Physical and Chemical properties of cement. 1.5 Testing of cement as per BIS. 1.6 Various Grades and types of cements for different site conditions and its properties. 1.7 Role of Aggregate, types of aggregate and it's source, Classification of aggregate, Soundness of aggregate, Alkali Aggregate Reaction, Grading of aggregate. 1.8 Testing of aggregate as per BIS. 1.9 Quality of water, impurities in mixing water and permissible limits as per BIS.
Unit – II Fresh Concrete	 2a. Measure workability of fresh concrete. 2b. Prepare concrete of required workability. 2c. Select suitable method of Batching, mixing, transporting, placing and finishing of fresh concrete as per site condition with 	 2.1 Concrete chain - Various stages of making fresh concrete at site 2.2 workability, factors affecting workability, Effect of water cement ratio, adjustments of materials to avoid segregation and bleeding, methods of Measurement of workability as per BIS - slump test, compaction factor test, flow table test,

	available resource materials.	2.2	vee bee test .
	2d. Select suitable method of	2.3	Methods of Batching, mixing of
	Curing of concrete as per site		materials for making fresh concrete -
	condition.		hand mixing and machine mixing,
		2.4	mixing time.
		2.4	Methods of Transportation of fresh
			concrete - conventional and through
			pumps and pipeline.
		2.5	Placing of concrete - formwork
		2.0	stripping time, under water concreting
		2.6	Compaction, importance of
			compaction, methods - hand
		2.7	compaction, machine compaction -
			various vibrators and other
			equipments, time of vibration,
		• •	vibrating techniques and precautions.
		2.8	Methods of finishing of fresh concrete,
			Laitance & its removal.
		2.9	Curing, importance of curing, period
			of curing accelerated curing,
			Conventional methods of curing -
			water curing methods, Special
			methods of curing- steam, membrane,
			Infrared, Electrical.
	3a. Evaluate Properties of	3.1	Hardened Concrete and its Properties:
	Hardened Concrete		Compressive Strength, Tensile
	3b.Conduct destructive tests and		Strength, Bond Strength, Flexural
Unit– III	interpret its results.		Strength, Durability and
Hardened	3c. Conduct non destructive tests		impermeability.
Concrete	and interpret its results.	3.2	Factors affecting Compressive
	3d.Check the quality of concrete		Strength.
	as per acceptance criteria.	3.3	IS Test Procedure to find Compressive
			& Tensile Strength of Concrete,
			Acceptance Criteria, Mean Strength &
i i i i i i i i i i i i i i i i i i i			
			Standard Deviation.
		3.4	Creep and Shrinkage of Concrete & its
		3.4	Creep and Shrinkage of Concrete & its effect, factors affecting Creep and
			Creep and Shrinkage of Concrete & its effect, factors affecting Creep and shrinkage.
			Creep and Shrinkage of Concrete & its effect, factors affecting Creep and shrinkage. Durability of Concrete & factors
		3.5	Creep and Shrinkage of Concrete & its effect, factors affecting Creep and shrinkage. Durability of Concrete & factors affecting it.
		3.5 3.6	Creep and Shrinkage of Concrete & its effect, factors affecting Creep and shrinkage. Durability of Concrete & factors affecting it. Importance of NDT.
		3.5 3.6	Creep and Shrinkage of Concrete & its effect, factors affecting Creep and shrinkage. Durability of Concrete & factors affecting it. Importance of NDT. Methods of NDT for Concrete-
		3.5 3.6	Creep and Shrinkage of Concrete & its effect, factors affecting Creep and shrinkage. Durability of Concrete & factors affecting it. Importance of NDT. Methods of NDT for Concrete- Rebound Hammer Test, Ultrasonic
		3.5 3.6	Creep and Shrinkage of Concrete & its effect, factors affecting Creep and shrinkage. Durability of Concrete & factors affecting it. Importance of NDT. Methods of NDT for Concrete-
	4a. Differentiate Nominal Mix	3.5 3.6 3.7	Creep and Shrinkage of Concrete & its effect, factors affecting Creep and shrinkage. Durability of Concrete & factors affecting it. Importance of NDT. Methods of NDT for Concrete- Rebound Hammer Test, Ultrasonic

Unit– IV Concrete Mix Design	 and Design Mix. 4b.Interpret test results of materials for concrete for concrete mix design 4c. Design concrete mix for required grade of concrete (for ordinary and standard grade) 	 4.2 Concrete Mix Design and its importance. 4.3 Different methods of Mix Design and its suitability. 4.4 Concrete Mix Design as per IS 10262. 4.5 Example of Mix design as per IS method for ordinary and standard grade of concrete without and with admixtures.
Unit– V Chemical Admixture, Special Concrete and Modern Trends	 5a. Use relevant admixture according to purpose of concrete 5b. Prepare special concrete for given purpose 5c. Apply knowledge of modern trends and research in concrete technology in the field. 	 5.1 Admixtures in concrete: Purpose, properties and application for different types of admixture such as accelerators, retarders, water reducing admixtures, air entraining agents and super plasticizers. 5.2 Special Concrete: Properties, Advantages and limitations of the following types of Special Concretes Self-Compacting Concrete (SCC), Pervious Concrete, Fiber reinforced concrete, Ready mix concrete, Fly ash concrete, Recycled Aggregate Concrete, High performance Concrete, 3D printed Concrete 5.3 Modern trends and research in concrete technology, relevant journals and institutes.
Unit– VI Repair Rehabilitation and Retrofitting of Concrete Structures	 6a. Differentiate repair, rehabilitation and retrofitting. 6b. Apply appropriate repair and rehabilitation techniques for damaged concrete structures. 6c. Apply appropriate retrofitting methods to concrete structures. 	 6.1 Definition of repair, rehabilitation and retrofitting 6.2 Deterioration of concrete, types, causes and prevention. 6.3 Corrosion of reinforcement, causes and prevention. 6.4 Repair and Rehabilitation stages-Removal of damaged concrete, Pretreatment of surfaces and reinforcement, Application of repair materials, Repair Procedure. 6.5 Repair and Rehabilitation material - Cement, Steel and special material like, Shotcrete, Epoxy resins, Epoxy mortar, Gypsum cement mortar, Quick setting cement mortar etc. 6.6 Repair and Rehabilitation techniques - Grouting, Guniting, Routing and

sealing, Stitching, Drilling and Plugging
etc.
6.7 Retrofitting Methods - Adding Steel
Bracing, Jacketing Method, External
Plate Bonding, Base Isolation
Technique, Mass Reduction Technique,
Wall Thickening Technique, Fiber
Reinforced Polymer (FRP), Adding
Shear Wall, Epoxy Injection Method,
Section Enlarging Reinforcing Method
etc.

9.	SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN
----	---

Unit	Unit Title	Teaching	eaching Distribution of Theory Mar				
No.		Hours	R	U	Α	Total	
			Level	Level	Level	Marks	
I	Cement, Aggregates and Water	06	2	4	4	10	
П	Fresh Concrete	08	4	4	6	14	
III	Hardened Concrete	08	4	4	6	14	
IV	Concrete Mix Design	06	2	2	6	10	
V	Chemical Admixture, Special	08	2	4	6	12	
	Concrete and Modern Trends						
VI	Repairs, Rehabilitation and	06	2	4	4	10	
	Retrofitting of Concrete Structure						
	Total	42	16	22	32	70	

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may slightly vary from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated **co-curricular** activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Conduct a market survey for cement for various companies, cement grade and price.
- b) Conduct a market survey for fine aggregate for various types and prices.
- c) Conduct a market survey for coarse aggregate for various types and prices.
- d) Conduct a market survey for various types of admixtures and price
- e) Visit and collect photographs of Batching, mixing, transporting, placing and finishing of fresh concrete from two different construction sites.
- f) Visit and collect information and photographs of workability tests carried out on fresh concrete on construction sites.

- g) Visit and collect information regarding quality control measures for concrete taken by site engineers on any construction site.
- h) Visit the nearby RMC plant.
- i) Prepare presentation on at least one research paper related to latest trends of concrete technology from any journal of civil engineering.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/subtopics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No. 4* means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.10*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on environment and sustainability.
- g) Guide students for using data manuals.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-projects are group-based (group of 3 to 5). However, **in the fifth and sixth semesters**, the number of students in the group should **not exceed three**.

The micro-project could be field application based, internet-based, workshop-based, laboratory-based or theory based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain a dated work diary consisting of individual contributions in the project work and give a seminar presentation of it before submission. The duration of the micro-project should be about **14-16** *(fourteen to sixteen) student engagement hours* during the course. The students ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Compare at least two physical properties of cement of two different companies with different prices.
- b) Compare at least two properties of fine aggregate from two different sources with different prices.
- c) Compare at least two properties of coarse aggregate from two different sources with different prices.
- d) Measure the effect of water cement ratio on workability of concrete by slump test.

- e) Measure the effect of water cement ratio on workability of concrete by compaction factor test.
- f) Measure the effect of water cement ratio on compressive strength of concrete.
- g) Measure the effect of curing on the compressive strength of concrete.
- h) Measure the effect of admixture on workability and strength of concrete.
- i) Prepare special concrete with non conventional material.
- j) Measure the quality of concrete at two different places with non-destructive tests.
- k) Prepare a computer program or spread sheet for Concrete Mix Design as per IS:10262.

15.	SUGGESTED LEARNING RESOURCES						
Sr. No.	Title of Book	Author	Publication with place, year and ISBN				
1	Concrete Technology	M S Shetty	S Chand & Company Ltd, New Delhi				
	Theory and Practice		ISBN-13:978-9352533800				
2	Concrete Technology	Shanthakumar A R	Oxford University Press, New Delhi				
			ISBN-13: 978-0199458523				
3	Concrete Technology	M L Gambhir	McGraw Hill Education (I) Pvt Ltd,				
	Theory and Practice		New Delhi				
			ISBN-13: 978-1259062551				
4	Concrete:	P Kumar Mehta	McGraw Hill Education (I) Pvt Ltd,				
	Microstructure,	Paulo J M	New Delhi				
	Properties, and Materials	Monterio	ISBN-13: 978-9339204761				
5	Properties of concrete	A M Nevill	Pearson Education				
		J J Brooks	ISBN-13: 978-9353436551				
6	IS 10262		Bureau of Indian Standards				

13. SUGGESTED LEARNING RESOURCES

14. SOFTWARE/LEARNING WEBSITES

- a) NPTEL Course :-Concrete Technology by IIT, Delhi https://nptel.ac.in/courses/105102012
- b) Concrete Technology laboratory Tests : https://www.youtube.com/playlist?list=PLkyVnO47pDX9YJglk1o2iYzWgABo5I_xA
 Video series for Concrete Tec
- c) Virtual Lab by Ministry of Education, Government of India <u>www.vlab.co.in</u>

15. PO-COMPETENCY-CO MAPPING

Semester V	Concrete Technology (Course Code: 4350601)									
	Pos									
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge	-	PO 3 Design/ development of solutions	Experimentation &Testing	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Management	PO 7 Life-long learning			

<u>Competency</u>	Prepare con	Prepare concrete of required strength and other specifications with quality control measures.					
Course Outcomes COa)Select suitable concrete materials for different site conditions and required concrete works.	2	-	-	3	2	2	2
COb) Prepare concrete of required specifications under different conditions.	2	-	-	3	2	2	2
COc) Check the quality of concrete.	2	-	-	3	2	2	2
COd) Design concrete mix proportions for required specification.	2	2	3	3	2	2	2
COe)Prepare special concrete using relevant admixture and concreting materials.	2	-	-	3	2	2	2
COf) Apply appropriate repairs and retrofitting techniques for concrete structures.	2	-	-	3	2	2	2

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE <u>GTU Resource Persons</u>

Sr. No.	Name and Designation	Institute	Contact No.	Email
1.	Shri P. V. Rayjada, HOD Applied Mechanics	L.E. College (Diploma), Morbi	9824281646	<u>satwikpr@gmail.com</u>
2.	Dr D. N. Parekh, Sr Lecturer, Applied Mechanics	Sir BPTI, Bhavnagar	9428408308	dnparekh@gmail.com
3.	Shri V. J. Thekdi, Sr Lecturer Applied Mechanics	R.C.T.I., Ahmedabad	9228415246	vthekadi@gmail.com

4.	Ms. Bhruguli H. Gandhi Sr Lecturer, Applied Mechanics	R.C.T.I., Ahmedabad	9099076555	bhruguli@gmail.com

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-V

Course Title: Water Resource Engineering

(Course Code: 4350602)

Diploma program in which this course is offered	Semester in which offered
Civil Engineering	5 th Semester

1. RATIONALE

The quantitative study of the hydrologic cycle, or how water is distributed and circulated among the earth's atmosphere, land, and oceans, is known as water resources engineering. Civil engineers play a vital role in water resource systems' optimal planning, design, and operation. Due to extensive industrial development, population increase, and changing lifestyles, our need for water is rising quickly. As a main supply of water, rain is what we rely on the most. Engineer having the challenge to restore water of unequal and uneven rainfall over rainy seasons so need to river connected structure to storage so resolving the water storage issue by diverting excess water from plains to deficient regions. The groundwater system is another significant source of water, and it likewise heavily depends on prior years' rainfall. We know that the groundwater table is fast dropping due to extensive consumption, overuse, and annual rainfall deficiency. This course is specifically created for Diploma in Civil Engineering students in order to emphasize the concept of water resource engineering while also raising knowledge about the proper use and conservation of water. It has been made an effort to acquire theoretical knowledge with a focus on particular elements of managing water resources. The curriculum especially addresses the themes of hydrology, runoff, interlinking of river, watershed management, groundwater recharge, water harvesting structures, etc.

2. COMPETENCY

The curriculum should be established and course material should be presented with the intention of helping students develop a variety of abilities that will enable them to achieve the following competency:

• Impart the fundamental skills and knowledge necessary to execute the practice of water resources engineering.

3. COURSE OUTCOMES (COs)

The theory should be taught and the exercises should be done in a way that allows students to illustrate the course objectives by demonstrating various learning outcomes in the cognitive, psychomotor, and affective domains to demonstrate following courses outcomes.

(1) Explain the importance and principles of Hydrology.

- (2) Estimate hydrological parameters and apply concepts of it in the interlinking of rivers.
- (3) Articulate the basics of Groundwater flow.
- (4) Calculate reservoir capacity and select suitable storage work for given site condition.
- (5) Design the appropriate rainwater harvesting scheme and required structures for given

Conditions.

Teach	ing Sch	neme	Total Credits	Ex		amination S	Scheme		
(In	Hours	s)	(L+T/2+P/2)	Theory Marks		Theory Marks Practical Ma		l Marks	Total
L	Т	Р	С	СА	ESE	CA	ESE	Marks	
3	0	2	4	30*	70	25	25	150	

4. TEACHING AND EXAMINATION SCHEME

(*):Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate the integration of COs, and the remaining 20 marks is the average of 2 tests to be taken during the semester for assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the Sub-components of the COs. Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required	
	Draw labelled sketch of:			
1	Hydrological cycle			
2	Rain gauge			
3	 Components of gravity dam and earthen dam section. 	IV		
4	Components of Diversion Head works	IV		
5	 Roof-top rainwater harvesting system 	V		
6	Types of Aquifers	II		
7	Concept of interlinking of river structure and assemble			
8	Calculate average rainfall for the given area using the arithmetic mean method & Isohyetal method	I	2*	
9	Draw a Thiessen polygon for a given area with rain gauge station points.	I	2*	
10	Calculate Runoff for given catchment area using empirical formula	I	2*	
11	Compute optimum number of rain gauge for given catchment area		2*	
12	Calculate reservoir capacity from the given data.	II	2*	
13	Estimation of flood using unit hydrograph.	II	2*	
14	Prepare presentation on the technical details of any one emerging	Ш	2	
15	technique in water resource engineering. Field Visit	IV	2	
	Total	IV	2 28	

<u>Note</u>

- *i.* More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- *ii. The following are some sample 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed Practical Exercises of this course required which are embedded in the COs and ultimately the competency.*

S. No.	Sample Performance Indicators for the PrOs	Weight age in %				
	For PrOs 1 to 12					
1	Initiative of student in collecting data and computation.	20				
2	Ability to work with team/Group	10				
3	Comprehension and presentation skill	30				
4	Correctness of design calculations and drawing	30				
5	Punctuality and Neatness	10				
	Total	100				

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment's with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practical in all institutions across the state.

S. No.	Equipment Name with Broad Specifications	PrO. No
1	Technical Drawings, maps	1,2,4,6,7
2	Digital Plan meter	9
3	Drawing instruments	1,2,4,6,7,8,10, 11
4	Computing Devices	8,10,11,12

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above-mentioned Cos and PrOs. More could be added to fulfil the development of this competency.

- a) Demonstrate working as a leader/a team member.
- b) Follow safety practices on site.
- c) Follow ethical practices.
- d) Practice environmental friendly methods and processes. (Environment related)

The ADOs are best developed through the laboratory/field-based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.
- 8. **UNDERPINNING THEORY** Only the major Underpinning Theory is formulated as higher level UOs of *Revised Bloom's taxonomy* in order for the development of the COs and competency

is not missed out by the students and teachers. If required, more such higher-level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at Application and	
	above level)	
Unit – I Introduction and Hydrology		 1.1 Introduction to W.R.E., Objectives of Water Resource development, water resources of India 1.2 Utilization of Water resources 1.2.1 Irrigation 1.2.2 Water supply 1.2.3 Hydroelectric power generation 1.3 Types & Methods of Irrigation 1.3.1 Subsurface irrigation 1.3.2 Surface irrigation Uncontrolled flooding method, Border strip method, Check method, Kasin method, Sprinkler irrigation method Vi Sprinkler irrigation method 1.4 Advantages & ill Effects if irrigation. 1.5 Hydrology: Definition & Concept of Hydrological Cycle, forms & Types
		of Precipitation 1.6 Measurement of Rainfall 1.6.1 Rain Gauge i Non Recording type Rain gauge ii Recording type Rain gauge 1.7 Methods of calculating average rainfall i Arithmetic mean method, ii Isohyetal method, iii Theissen polygon method. 1.8 Determine optimum no. of rain gauges for given catchment area.
Unit – II Runoff and Interlinking of Rivers	 2.a Describe Runoff 2.b Compute Runoff using by various empirical formula 2.c Explain Evaporation transpiration, factor affecting on it 2.d Explain Hydrograph, unit 	 2.1 Runoff 2.1.1 Introduction of runoff 2.1.2 Factor affecting Runoff 2.1.3 Runoff calculating using empirical formula only 2.2 Evaporation, Transpiration & Evapotranspiration 2.2.1 Factor affecting Evaporation

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at Application and	
	above level)	
	hydrograph and uses in	2.3 Hydrograph
	Engineering.	2.3.1 Unit hydrograph
	2.e Discuss the interlinking of	2.3.2 Uses
	rivers and NRL projects in	2.4 Introduction of interlinking of rivers
	India.	2.4.1 National River linking project
	2.f Identify various interlinking	[NRLP]
	Projects in India, Needs,	2.4.2 Benefits of National River linking
	Plan.	project
		2.4.3 Interlinking of rivers in India: Need,
	2.g Describe Classification of	objective and plan
	rivers, Flood in river, fore	2.4.4 Technical features of Saurashtra
	casting methods, flood	Narmada Avtran Irrigation Yojana
	Control in India.	[SAUNI YOJNA] 2.5 Classification of rivers
		2.5 Classification of rivers 2.5.1 Major rivers in India and Gujarat
		2.5.2 Interlinking of rivers in India and its
		importance
		2.6 Flood, flood forecasting
		2.7 Flood control in India
		2.7.1 River training works
		2.7.2 Object of river training
		2.7.3 Classification of river training
		2.7.4 Methods of river training
		2.7.5 Levees
		2.7.6 Guide banks
		2.7.7 Spurs
		2.7.8 Types
		2.7.9 Artificial cut offs
		2.7.10 Launching apron
		2.7.11 Pitching of bank
		2.7.12 Pitched Island
		2.7.13 Miscellaneous methods
Unit– III	3.a Define ground water and	3.1 Sources of ground water
Groundwater	identify ground water	3.2 Importance of ground water and
and its	sources	Comparison of ground water source
Management	3.b Explain the terms related to	with other sources of water on
	ground water	dependability
	3.c List the types of wells and	3.3 Terms related to groundwater
	describe characteristics of	engineering:
	each type of well	3.3.1 Aquifer, Aquiclude, Aquifuge,
	3.d Illustrate necessity of	Aquitard, porosity, Specific yield,
	ground water recharging	Specific retention, storage
	3.e Compare various methods of	coefficient, coefficient of
	Recharging ground water.	permeability, coefficient of
	3.f Explain phenomenon of Sea	transmissibility, Yield, specific
	water intrusion	yield
		3.4 Types of well Open, Tube and flowing

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
•	(4 to 6 UOs at Application and	· · · · · · · · · · · · · · · · · · ·
	above level)	
		well concept, location and importance
		3.5 Necessity of recharging
		3.6 Types of artificial recharge
		i Spreading method.
		ii Pit method / khet-talavadi
		iii Induced recharge method
		iv Recharge well method.
		v Sub-surface dam.
		vi Check dam series
		vii Ponds
		viii Unlined canals
		3.7 Sea Water Intrusion phenomenon
		3.8 Relationship between Salt
		water/Fresh water interface
		3.9 Disadvantages and Remedial
		measures to counteract salt water
		intrusion
Unit– IV	4.a Explain Various	4.1 Surveys/Investigation for;
Storage and	Surveys/Investigation carried	4.1.1 Hydrological data
Distribution	out In Storage works	4.1.2 Geological data
Works	4.b Discuss reservoir capacity	4.1.3 Topographical investigation
	And its Losses	4.1.4 Legal data
	4.c Explain the Storage zones of	4.1.5 Water Rights Policy
	The reservoir	4.1.6 Economic data
	4.d Give Classification and types	4.1.7 Benefit-cost ratio
	Of dams	4.2 Site Selection for Reservoir & Storage
	4.e Describe the purposes &	zones
	Components of Diversion	4.3 Methods of estimating reservoir
	Head works	Capacity
	4.f Explain about weir and	4.4 Losses in Reservoir
	Barrage	4.5 Classification of Dams & their Types
	4.g Give a Classification of the Canal based on function	4.5.1 Gravity dam 4.5.2 Earthen dam
		4.5.3 Arch dam
	&Canal lining	4.5.4 Buttress dam
		4.5.5 Rock fill dam
		4.5.5 Rock findam 4.6 Factors affecting the selection of the
		type of dams and selection criteria
		for the site of the dam
		4.7 Components of Gravity Dam and
		Earthen dam
		4.8 Purpose and Components of Diversion
		head works
		4.9 Explain the difference between the
		is explain the unrefered between the

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
Onit		Topics and Sub-topics
	(4 to 6 UOs at Application and	
	above level)	
		Weir and Barrage and their types
		4.10 Classification of canal based on
		Function
		4.11 Canal Lining, Advantages ,
		Materials and methods used
Unit – V	5.a Describe important	5.1 Concept of "water shed"
Watershed	characteristics of "water shed"	5.2 Classification of water sheds
Management	5.b Explain necessity of soil erosion	5.3 Characteristics of water shed, size, shape
& water	5.c Describe Rain water harvesting	5.4 Soil & Water conservation
Harvesting &	& methods.	5.5 Necessity of Soil erosion
Water Reuse	5.d Evolve strategies of enhancing	5.5.1 Causes
water neuse	people's participation in	5.5.2 Effects
	Watershed management.	5.5.3 Remedial measures against erosion
	5.e Discuss water harvesting &	5.6 Necessity of rain water harvesting
	water reuse	5.6.1 Importance of Rain water harvesting
		5.7 Roof-top rain water harvesting method and its design
		5.8 Watershed management & people's participation.
		5.9 Role of cooperative society in watershed
		management
		5.10 Water harvesting
		5.11 Runoff collection
		5.12 Onsite detention basin
		5.13 Seepage control
		5.14 Method evaporation control
		5.15 Water reuse
		5.16 Types of reuse technology
		5.17 Water reuse methods
		5.18 Benefits of recycled water
Unit– VI	6.a Understanding the Basic	6.1 Fundamentals of Geographical
GIS	Concept of GIS	Information system and Geospatial
Application	6.b Illustrate the Uses of GIS in	data
&software	Water resource engineering	6.2 List out uses of GIS in water resource
used in water	6.c Describe the Software Used	Engineering and give its brief.
Resources	for GIS application in Water	6.2.1 Use in the Management of
Engineering	resource	Geospatial data
		6.2.2 Flood and Drought Risk
		Assessment
		6.2.3 Mapping of water resources
		6.2.4 Groundwater management
		6.2.5 Quality analysis of water
		6.2.6 Water supply management 6.3 List out software used for GIS
		application in the water resource field
		and its Primary function

Unit	Unit Outcomes (UOs)	Topics and Sub-topics		
	(4 to 6 UOs at Application and			
	above level)			
		6.3.1 Esri ArcGIS/QGIS		
		6.3.2 HEC RAS		

Note: The UOs need to be formulated at the 'Application Level' and above of Revised Bloom's Taxonomy' to accelerate the attainment of the COs and the competency.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Marks			
No.		Hours	R	U	Α	Total
			Level	Level		Marks
I	Introduction and Hydrology	6	3	3	4	10
П	Runoff and interlinking of rivers	10	4	6	6	16
ш	Groundwater and Its management	6	2	2	6	10
IV	Storage and Distribution works	10	2	4	10	16
V	Watershed management & water harvesting and water re-use	8	2	4	8	14
VI	GIS application & software used in water resource engineering	2	2	2		4
Total		42	15	21	34	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist students in their learning and to teachers to teach and question paper designers/setters to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U, and A) in the question paper may vary slightly from the above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, the following are the suggested studentrelated **co-curricular** activities that can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct the following activities in groups and prepare reports of about 5 pages for each activity, also collect/record physical evidence for their (student's) portfolio which will be useful for their placement interviews:

- a) Collect data and drawings from various departments.
- b) Assimilate data to be used in the required form
- c) Undertake micro project
- d) Interpret data
- e) Prepare drawings and calculations
- f) Prepare presentations
- g) Case study of Technical features of Saurashtra Narmada Avtran Irrigation Yojana [SAUNI YOJNA]
- h) Visit the nearby Dam, Canal network, SUNI YOJNA, water shed structure like ket-talavdi , Rain water harvesting structure.

i) Conducted awareness program on Water Harvesting , Ground Water Recharge , Sea water Intrusion

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub M topics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No.* 4 means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.11*, teachers need to ensure the creation of opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on environmental and sustainability
- g) Expert lecture by water resource engineer about the emerging scenario of this field or industry experts

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her at the beginning of the semester. In the first four semesters, the micro-project is group-based. However, in the fifth and sixth semesters, it should preferably be **individually** undertaken to build up the skill and confidence in every student to become a problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should **not exceed three.**

The micro-project could be industry application based, internet-based, workshop-based, laboratory-bawd, or field-based. Each macro-project should encompass two or more Cos which are in fact, integrations of PrOs, UOs and ADOs. Each student will have to maintain a date work diary consisting of individual contributions to the project work and given seminar presentation of it before submission. The total Duration of the micro-project work should not be less than 16 [sixteen] student engagement hours during the course. The student ought to submit a micro-project by the end the semester to develop the industry-oriented Cos.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Prepare a list of existing Storage works and diversion works of the district with full details.
- b) Prepare a report on existing water harvesting structures in your city.
- c) Conduct survey related to any watershed development projects in your state.
- d) Prepare presentations on emerging topics or from the theory related to water resources engineering.
- e) Identify irrigation methods used in your city/village and prepare a report on it.

- f) Prepare a technical summary of all rain gauge stations situated in your district from irrigation department/concerned offices in groups of two/three students.
- g) Collect technical details of river interlinking project of your state/country Except SAUNI YOJNA.
- h) Prepare list of Perennial/Non perennial river of India on which any dam is situated.
- Collect information about ground water observation well/recharge well (location, size, diameter, shape, depth, purposes) of your district from ground water board/ concerned offices in group of two/three students and prepare summary of it.
- j) Develop the 2D or 3D model of Rail water forecast equipment , dam, canal, watershed structure , River linking project

13. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication with place, year, and ISBN
1	Engineering Hydrology	K. Subramanya	McGraw Hill Education ISBN-10: 1259029972
2	A Textbook of Hydrology and Water Resources Engineering	R K Sharma	Dhanpatrai & Sons, Delhi ISBN: 8121921287
3	Groundwater	H M Raghunath	New Age International Ltd., New Delhi ISBN: 9788122419047
4	Hydrology & Water Resources Engg.	S.K. Garg	Khanna Publications, Delhi ISBN-13. 978-8174090614
5	GIS in water resource engineering	Dr. Gajraj Singh	SBS Publishers Pvt Ltd. ISBN: 9789380090511
6	Interlinking of Indian Rivers	Radhakant bharti	Lotus Press ISBN-13. 978-8183820417
7	Morden water Resources Engineering	Lawrence k. Wang, Chih Ted Yang	Springer Science, ISBN: 978-1-62703- 595-8

14. **SOFTWARE/LEARNING WEBSITES**

- (1) <u>https://swhydrology.gujarat.gov.in/</u>
- (2) <u>https://guj-nwrws.gujarat.gov.in/</u>
- (3) <u>https://sardarsarovardam.org/</u>
- (4) <u>https://archive.nptel.ac.in/courses/</u>
- (5) Virtual Lab by Ministry of Education, Government of India https://www.vlab.co.in/
- (6) <u>https://www.youtube.com/watch?v=fx1uUek3lqg</u>
- (7) https://www.youtube.com/watch?v=vDr1PiNhYz8

(8) <u>https://www.youtube.com/watch?v=2s2b5-EsmV0</u>

15. PO-COMPETENCY-CO MAPPING

Semester IV	Water Resources Engineering (Course Code: 4350602)									
	POs and PSOs									
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge		PO 3 Design/ development of solutions		PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Management		PSO 1	PSO 2	PSO 3 (If needed)
<u>Competency</u>	• Impa	art the fu	ndamental	skills and know	vledge nece	ssary to cor	nprehe	nd tl	ne pra	actice
	-		urces engin		Ū	•	•		•	
CO a) Explain the importance and principles of Hydrology	3				2		3			
CO b)Estimate hydrological parameters and apply concepts of it in the interlinking of rivers	3	3	3	2	3	3	3			
CO c)Articulate the basics of Groundwater flow	3	3	2	2	2	3	3			
CO d)Calculate reservoir capacity and select suitable storage work for given site condition.	2	3	3	3	3	2	3			
CO e)Design the appropriate rainwater harvesting scheme and required structures for given Conditions.	3	3	3	2	3	3	3			

Legend: '3' for high, '2' for medium, '1' for low or '-' for the relevant correlation of each competency, CO, with PO/ PSO

17. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No.	Name and Designation	Institute	Contact No.	Email
1	Mr. R.S. Oza	Govt. Polytechnic, Jamnagar	9426994979	rahuloza.engg@gmail.com
2	Smt. P.A. Vyas	Govt. Polytechnic, Rajkot	9426338119	Pritivyas16@gmail.com
3	Mr. A.R. Desai	Sir B.P.T.I, Bhavnagar	7878246020	Desaiakshay1989@gmail.com

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021)

Course Title: Civil Engineering Project-I (Course Code: 4350603)

Diploma Programme in which this course is offered	Semester in which offered
Civil	5 th Semester
Engineering	5 Semester

1. RATIONALE

In order to help the students development, live project challenges should be offered to them as often as possible. For the students to be able to use and apply engineeringbased knowledge and skills to address real world challenges, they must have first-hand experience and confidence. The selected pursuits should be relevant to student's academic interests and of professional relevance to organizations in the industrial sphere. So as to participate and manage a large civil engineering projects in future.

The Project and Seminar are both combined with the goal of developing a specific set of communication skills (report preparation, survey report writing, lab experiment results writing, participating in group discussions, verbally defending the project in the form of Seminar, etc.).

2. COMPETENCY

The goal of this project is to enhance capabilities among the students for comprehensive analysis and practices in a systemic way to develop different types of skills so that students are able to acquire following competencies:

- 1. Apply the theoretical and practical knowledge and abilities which have learned in disciplines and courses to a project that will work in a real-world working context, ideally one that is industrial
- 2. Describe the functioning of the industrial setting and its working practices.
- 3. Explain what entrepreneurship is and how to become an entrepreneur
- 4. Determine and compare the gap between the technical knowledge gained through the curriculum and the real industrial requirement and to make up for it by acquiring additional knowledge as needed
- 5. Field computing and gaining practical experience in the planning, designing and execution of civil engineering projects.

3. COURSE OUTCOMES

Upon successful completion of this course, students will be able to;

- **CO.1** Apply principles of basic science and engineering fundamental in analysis, design and operation of civil engineering systems.
- **CO.2** Assess societal needs and plan suitable infrastructure
- **CO.3** Analyze and design components of civil engineering projects
- **CO.4** Develop team spirit and inter-personal dynamics for effective execution and management of projects

CO.5 Engage in lifelong learning and adapt to changing professional and societal needs

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme		Total Credits	Examination Scheme						
(In	Hours	5)	(L+T/2+P/2)	Theory Marks Practic		Practical	Practical Marks		
L	Т	Р	С	Ε	М	Ι	V	Marks	
0	0	4	2	0	0	50	50	100	

Legends: L - Lecture; T – Tutorial, P – Practical, E – Theory External, M - Theory Internal, I – Practical External, V - Practical Internal,

5. COURSE DETAILS

The project is offered to the students of 5th and 6th semester in order to inculcate innovation and attitude to develop skills. A group of four to eight students (maximum of fifteen students) work as a team for major project work.

The project should be selected such that it could be completed within 5th and 6th semester.

Project work should be distributed in three phases

- 1. Shodh Yatra :- Project topics searching starts during 4th semester
- 2. Project proposal :- Submission of project proposal against department PRC at the commencement of 5th semester (Project Review Committee)
- 3. Submission of final project report :- Submission of final project report at the end of semester.

GUIDELINE FOR THE PROJECT-I, FOR DIPLOMA ENGINEERING

Each final year (Fifth and Sixth Semesters) Project will be a Major Project. It will be divided into two Semesters

Project – I: 5th Semester (Marks: 100), L:T:P – 0:0:4, Credits: 2

- Out of 100 marks, 50 marks are to be given as Practical Internal as per scheme suggested.
- The college, Through Internal Assessment, will assess the User Defined Problems (UDP)/Industry Defined Problems (IDP), submitted by students as per time limit prescribed by the university in the fifth semester.

- The remaining 50 marks are for the Practical External which shall be conducted by the GTU.
- Each defined project needs to be from Industry/Research organization/Govt. organization/ socio-technical issues and according to the need of time for solving real life problems.
- There should be one Project Review Committee(PRC) in consists of following members
 - Head of Department (HOD)
 - Faculty member from the department-Project In charge
 - Internal faculty/Industry resource person

6. PROJECT GUIDELINE FOR STUDENT:

- Project identification should be based on "Shodh-Yatra" carried out by the students, during 4th Semester. The "Shodh Yatra" should be completed by the end of the first week from the commencement of the fifth semester.
- Students may visit the syllabus on GTU website for getting guidelines for final year project provisional titles or areas.
- They may consult the faculties of their choice of Civil Engineering for getting more clarity.
- Problem definition for the project needs to be submitted by every student/group of students within prescribed time limit against PRC. There should be one presentation of project proposals against PRC.
- After approval student should assign to the project guide in the beginning of 5th semester and students may work on areas approved under the supervision of allotted supervisor.
- There are two project review presentation during the semester against PRC. One for finalizing project proposal and one at the mid of the semester. The suggestions given by PRC have to be incorporated before completing the project.
- They may have to show their progress periodically to their supervisor as per directions given by supervisor.
- The students may submit their final project report duly signed/approved by their supervisor to the department at the end of semester.
- Real time problems, Industry related problems, and environment friendly problems should be chosen as a final year project.
- **Identification of Topic:** The selection of topic is of crucial importance. It should be decided based on your understanding of the study, in the field and interest. The topic should be discussed with the project supervisor. It should be in harmony with your areas of interest and the specialization of the project supervisor.
 - Environment friendly and having low or zero carbon emission projects will be given priority.
- Students are advised to select project supervisor who are active professionals in the relevant area of the selected topic.
- The internal assessment marks will be evaluated based on progressive evaluation and oral presentation by the internal supervisor

7. PROJECT ALLOCATION POLICY:

- Students may have to submit their project proposal/ research interest with proposed supervisor if they have consulted to PRC within a week from commencement of 5th semester.
- There should be one power point presentation against PRC.

- PRC will access the proposal received by the students group and then finalize their titles/research areas and allocate them supervisor.
- The groups of students have to work under guidance of their allocated supervisor.

8. TYPES OF PROJECT:

The types of project may include:

- 1. Field study (empirical study).
- 2. Statistical and case studies
- 3. Experimental investigation,
- 4. Computational work,
- 5. Data collection and its analysis,
- 6. Design oriented.
- 7. Comprehensive case study (problem formulation, analysis and recommendations),
- 8. Comparison of practices/ validation of theory/ method of testing, survey of quality Management practices

The project should be challenging but manageable within the resources and time available and it should be helpful to society.

Some of suggested projects topics are given below:

- Advance Construction Techniques
- Smart Materials
- Rehabilitation Techniques.
- Advanced Pavement Design
- Stability of High Rise Buildings.
- Water Resources Engineering
- Analysis for Seismic Retrofitting Of Buildings.
- Bridge Bearings & Stability
- Advanced Earthquake Resistant Techniques
- Advanced Pavement Design
- Use of Polymer Composites In Bridge Rehabilitation
- Formwork Types & Design
- Marine Pollution
- Rectification of Building Tilt
- Interlinking of Rivers
- Flexible Pavement
- Value Engineering In Construction.
- Intelligent Transport System
- Development of Remote Monitoring System For Civil Engineering
- Fly-Ash Concrete Pavement
- Eco- Friendly Housing
- Non-Destructive Testing Of Concrete
- Offshore Structures.
- E Waste Disposal

- Advanced Construction Equipments
- Study of Un Burnt Bricks
- Interlinking of Rivers
- Effects of Truck Impacts on Bridge Piers.
- Analysis for Seismic Retrofitting of Buildings.
- Hydraulic & Hydrological impacts on Bridges.
- Performance Evaluation of Existing Bridges Under Vehicle Dynamic Effects
- Zero Energy Buildings.
- Bamboo as a Building Material.
- Rectification of Building Tilt.
- Silica Fume Concrete.
- Sewage Treatment Plant of Taluka Place.
- Ground Improvement Techniques.
- Improvement of Bearing Capacity of sandy Soil By Grouting.
- Rural Road Development.
- Cellular Light Weight Concrete.
- Improvement of Bearing Capacity of sandy Soil by Grouting.
- Flexural Performance of Fiber Reinforced Mortar with Low Fiber Content.
- E Waste Disposal of District Head Quarter.
- Ground Improvement Techniques.
- Assessment of Cracks in R.C.C Building.
- High-Performance Smart Materials & Structures.

9. ROLE OF PROJECT REVIEW COMMITTEE:

- There should be one Project Review Committee(PRC), which consists of following members
 - Head of Department (HOD)
 - Faculty member from the department-Project In charge
 - o Internal faculty/Industry resource person
- PRC will arrange two reviews for the project in semester
 - One review for finalizing project titles/proposals and allotment of supervisor for each group of students
 - One midterm review.
- The PRC will give suggestions for improving quality of each project.

10. ROLE OF SUPERVISOR/GUIDE:

- The supervisor will supervise/guide the group of students allotted to him throughout the semester.
- He/she will assess the students individually as per stipulated assessment guidelines and keep record of it.
- Suggest resources to the students.
- Guide students on how to address issues on environmental and sustainability. Environment friendly and having low or zero carbon emission projects will be given priority.

• Motivate continuously students allotted to him for doing best projects.

11. ASSESSMENT CRITERIA FOR EFFECTIVE EVALUATION OF THE PROJECT:

The Diploma 5th Semester students project-I will be evaluated as per the scheme suggested below.

50 Marks are for Progressive Assessment to be evaluated by Institute concern Faculty /Supervisor for the Part-I only based on following criteria.

Sr. No.	Description	Marks
1	Identification of problem and Framing of Problem Statement	10%
2	Problem Analysis	10%
3	Feasibility of proposed solution	10%
4	Adherence to Action plan	10%
5	Content appropriateness	10%
6	Technical knowledge and awareness related to the project	15%
7	Project Report	15%
8	Presentation	10%
9	Question-Answer Technique	10%
	TOTAL	50

12. PO-CO MAPPING:

Semester:		Project-I (Course Code: 4350603)								
V				PO	Os and PSOs					
Competency & Course Outcomes	PO:1 Basic & Discipline knowledge	PO:2 Problem Analysis	PO:3 Design/ development of solutions	PO:4 Engineering Tools, Experimentation &Testing	PO:5 Engineering practices for society, sustainability & environment	PO:6 Project Management	PO:7 Life-long learning	PSO:1	PSO: 2	PSO: 3
CO:1	3	3	3	3	3	3	3	-	-	-
CO:2	-	3	3	2	3	2	-	-	-	-
CO:3	3	3	3	3	2	2	3	-	-	-
CO:4	-	-	_	_	3	3	3	-	-	-
CO:5	-	-	3	3	3			-	-	-

Legend: '3' for high,'2' for medium, '1' for low or '-'for the relevant correlation of each competency, CO, with PO/ PSO

13. SAMPLE EVALUATION RUBRICS:

Parameters	Excellent	Adequate	Average	Satisfactory
Identification of problem & Framing of Problem Statement	roblem & explanation of bblemextensive explanation of the purpose and need ofGood explanation of the purpose and need of the projectAverage explanation purpose and red		Average explanation of the purpose and need of the project	Moderate explanation of the purpose and need of the project
Problem Analysis	Compete explanation of the key concepts , strong descriptions of the technical requirements of the projects	Compete explanation of the key concepts , Insufficient description of the technical requirements of the projects	Compete explanation of the key concepts but little relevance to literature, Insufficient description of the technical requirements of the projects	All key concepts are not explain and very little relevance to literature, Insufficient description of the technical requirements of the projects
Feasibility of proposed solution	Detailed and extensive explanation/ analysis of content	Collects a great deal of information and good study of the content	Collects a great deal of information and moderate study of the content	Collects information and satisfactory study of the content
Adherence to Action plan	Strictly adhered to the Action Plan prepared in advance and achieved all the mile stones within specified time limit.	Adhered to the Action Plan prepared in advance and achieved all the mile stones within time limit.	Followed the Action Plan prepared in advance but delayed in achieving one or two of them but ultimately completed the project within time limit.	Carried out the activities randomly without following the Action Plan but ultimately completed the project within time limit.

Title and Feasibility (Problem Identification)

Note: These is suggested mapping, supervisor should change these mapping according to the type of project and assess accordingly.

Parameters	Excellent	Adequate	Average	Satisfactory
Content appropriateness	Appropriate Content and also presented in a logical sequenceContent is 		Content is moderately relevant, but presented randomly without logical concern	Presented content was partially relevant and also not in logical concern.
Technical knowledge and awareness related to the project	Extensive knowledge related to the project	Adequate knowledge related to the project	Average knowledge related to the project	Lacks sufficient knowledge
Project Report	Project report is according toProject report is according toProject Reportspecified format,specified format,		Project report is partially as per specified format	Project report is not as per specified format

Abstract and Depth of Knowledge/Analysis & Result / Implementation & Execution

Presentation and viva

Parameters	Excellent	Adequate	Average	Satisfactory	
Presentation	Presentations are appropriate and well delivered, Proper eye contact with audience and clear voice with good spoken language	Presentations are appropriate and well delivered, clear voice with good spoken language but less eye contact with audience	Presentations are appropriate but not well delivered, eye contact with few audience and unclear voice	Content of Presentations are not appropriate, eye contact with few audience and unclear voice	
Question- AnswerAnswered all the questionsTechniquesatisfactorily.		Answered some questions satisfactorily.	Answered 1 or 2 questions satisfactorily.	Unable to answer the questions satisfactorily.	

14. ARRANGEMENT OF CONTENTS IN PROJECT REPORT:

The sequence in which the project report material should be arranged as follows:

- 1) Cover Page
- 2) Title Page
- 3) Certificate
- 4) Abstract
- 5) Table of Contents
- 6) List of Tables
- 7) List of Figures
- 8) List of Abbreviations and Nomenclature
- 9) Chapters
 - i. Introduction
 - ii. Exhaustive Literature Survey/Review of Literature
 - iii. Define the problem.
 - iv. Body of project (Developing the main theme of the present investigation project work)
 - v. Analysis/Results and Discussions
 - vi. Conclusions
 - vii. Future Enhancements / Recommendations
- 10) References
- 11) Appendices

Each chapter should be given an appropriate title. Tables and figures in a chapter should be placed in the immediate vicinity of the reference where they are cited. Footnotes should be used sparingly. They should be typed single space and placed directly underneath in the very same page, which refers to the material they annotate.

15. ARRANGEMENT OF PARAGRAPH IN A CHAPTER:

- Each paragraph in a chapter should be properly numbered for example, 1.1, 1.2 etc., where first digit represents the Chapter Number and second digit the paragraph number. There is no need to indicate the number for the first paragraph in a chapter.
- Sub-paragraphs, if any indicated as 1.1.1, 1.1.2 etc. i.e. first digit representing the chapter, the second representing the paragraph and third representing the sub-paragraph.
- **Don't underline the headings or subheadings or side heading**. Instead use the bold letters.

16. APPENDICES:

- Appendix showing the detailed data, design calculations, derivation etc
- Appendices are provided to give supplementary information, which is included in the main text may serve as a distraction and cloud the central theme.
- Appendices should be numbered using Arabic numerals, e.g. Appendix 1, Appendix 2, etc. Appendices, Tables and References appearing in appendices should be numbered and referred to as appropriate places just as in the case of chapters.

• Appendices shall carry the title of the work reported and the same title shall be made in the contents page also.

17. LIST OF REFERENCES:

- References should be numbered from 1st chapter to the last chapter in ascending order and should be shown in square brackets.
- The bibliography list should be made strictly in alphabetical order of the name of the authors.
- The listing of references should be typed 4 spaces below the heading
- **References** in alphabetical order in single spacing left justified.
- The reference material should be listed in the alphabetical order of the first author.
- The name of the author/authors should be immediately followed by the year and other details.
- A typical illustrative list given below relates to the citation example quoted above.

[Chapter]Author Name, "Title of the book or paper", Publisher name, (year), Page No

References:

 [1] Ariponnammal, S. and Natarajan, S. 'Transport Phonomena of SmSel – X Asx', Pramana (1994) – Journal of Physics Vol.42, No.1, pp.421-425.

18. TABLE AND FIGURES:

- In the references by the word Table, is meant tabulated numerical data in the body of the project report as well as in the appendices.
- All other non-verbal materials used in the body of the project work and appendices such as charts, maps, photographs and diagrams may be considered as figures.

19. TYPING INSTRUCTIONS:

- The impression on the typed copies should be black in colour.
- The project report should be submitted in A4 size (29 cm x 20 cm).
- Good quality or Bond paper should be used for the preparation of the project report.
- Typing should be done on one side of the paper with character font in size 12 of Times New Roman.
- 1.5 line spacing should be used for typing the general text.
- Subheading should be typed in bold Font size 12 and heading bold Font size 14.
- The layout should provide a margin of 1.50 Inches on the left, 1.00 Inches on the top, bottom and right.
- The page numbers should be indicated at the top-middle or bottom-middle of the each page.
- Heading s should be in bold should not underline the heading/subheadings and should not put colons (:) in headings or subheadings.

APPENDIX 1 (Cover page)

(A typical Specimen of Cover Page)

TITLE OF PROJECT REPORT

<1.5 line spacing>

A PROJECT REPORT

Submitted by <Italic>

NAME OF THE CANDIDATE(S)

In partial fulfilment for the award of the diplomaof

<1.5 line spacing><Italic>

DIPLOMA IN CIVIL ENGINEERING PROGRAMME

IN

DEPARTMENT OF CIVIL ENGINEERING Font size(14) logo

NAME OF THE COLLEGE

GUJRAT TECHNOLOGICAL UNIVERSITY

 <1.5 line spacing>

Year of submission: (MONTH & YEAR)

APPENDIX 2 (Title page)

(A typical Specimen of Title Page) A Project Report on

<TITLE OF THE PROJECT WORK>

Submitted for partial fulfilment of the requirements for the award of the

DIPLOMA IN CIVIL

ENGINEERINGIN

DIPLOMA IN CIVIL ENGINEERING PROGRAMME

BY BATCH

<Mr. / Ms. Name of the Student (Roll No.)> <Mr. / Ms. Name of the Student (Roll No.)> <Mr. / Ms. Name of the Student (Roll No.)> <Mr. / Ms. Name of the Student (Roll No.)> <Mr. / Ms. Name of the Student (Roll No.)>

Under the guidance of

<Name of the Staff with designation>

Civil Engineering Department

Department of Civil Engineering <<NAME OF INSTITUTE>> <<ADDRESS OF INSTITUTE>>

APPENDIX 3 (Certificate)

(A typical specimen of Bonafide Certificate)

COLLEGE NAME

CERTIFICATE

It is certified that this project report "......TITLE OF THE PROJECT....."

is the bonafide work of ".....NAME OF THE CANDIDATE....."

who has carried out the project work under my supervision.

<<Signature of the Head of the Department>>

<<Signature of the Project Supervisor>>

SIGNATURE

<<Name>>

HEAD OF THE DEPARTMENT

<<Department>>

<<Full address of the Dept & College >> College >> <<Name>>

PROJECT SUPERVISOR

SIGNATURE

<<Academic Designation>>

Department of Civil Engineering

<<Full address of the Dept &

20. COURSE CURRICULUM DEVELOPMENT COMMITTEE:

GTU	Resource	Persons

No.	Name and Designation	Institute	Contact No.	Email ID
1	Hiteshkumar T. Patel, Lecturer in Civil Engineering	K D Polytechnic, Patan	8128699640	htpatel20@gmail.com
2	Devendrakumar N. Sheth, Lecturer in Civil Engineering	Government Polytechnic, Palanpur	9978441158	devendra_civil@yahoo.com
3	Arvindkumar R. Patel, Lecturer in Civil Engineering	Government Polytechnic, Palanpur	9998515817	arvindpatel19@gmail.com

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021)

Semester -V

Course Title: Summer Internship-II

(Course Code: 4350604)

Diploma programme in which this course is offered	Semester in which offered
Diploma in Civil Engineering	5 th semester

1. RATIONALE

The rise in global competition has prompted organizations to devise strategies to have a talented and innovative workforce to gain a competitive edge. AICTE has initiated various activities for promoting industrial internship at the diploma level in technical institutes. The internship experience will augment outcome-based learning process and inculcate various attributes in a student in line with the graduate attributes defined by the NBA. Internships are educational and career development opportunities, providing practical experience in a field or discipline.

New technologies are developing fast and its effects can be seen in our society. Summer internship is a good option by which students to get flavor of such emerging technology and familiar with industry environment to identify scope and focus of their career development opportunities. Main objective of summer internship is hand-on practice to expose students for thinking about professional career by observing, understanding, adopting mechanism of ongoing work of industry and to obtain various types of skills.

The duration of internship will be 6 weeks. It will be started during summer vacation after 4th semester or during 5thSemester.

Offline internship in industry - During the summer vacation after 4thsemester, students are ready for industrial experience. Therefore, they may choose to undergo Internship / Innovation / Entrepreneurship related activities. Students may choose either to work on innovation or entrepreneurial activities resulting in start-up or undergo internship with industry/ NGO's/ Government organizations/ Micro/ Small/ Medium enterprises to make themselves ready for the industry.

Students are suggested to select branch specific training in Civil Industry. Students are supposed to produce joining letter and relieving letter once the internship is over.

Student's needs to report at institute for 6 weeks progress to internal internship guide/supervisor in suggested reporting format which is given in syllabus and represent his/her work carried out for monitoring and evaluation purpose.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching-learning experiences:

Develop multiple types of skills such as planning, supervision, work ethics, communication, collaboration, decision making / Problem solving and management skills along with selected technical knowledge.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with the identified competency in the field of Civil Engineering are to be developed in the student for the achievement of the following COs:

CO:1 Learn and adopt the engineer's role and responsibilities with ethics.

- CO:2 Develop Skills required for business environment, operations, and procedures.
- CO:3 Understand the psychology of the workers and their habits, attitudes and approach to problem solving.
- CO:4 Get possible opportunities to learn, understand and sharpen the technical skills required for technical advancement.

CO:5 Develop life-long learning skills for a successful professional career.

4. TEACHING AND EXAMINATION SCHEME

	Teaching Scheme Total Credits		Examination Scheme						
()	n Hour	s)	(L+T/2+P/2)	Theory Marks		Practical Marks		Total Marks	
L	т	Р	С	E	М	I	V	lotal Warks	
0	0	6	3	0	0	50	50	100	

Offline internship in industry: I & V Assessment will be carried out based on submitted progress report by Industry resource person & report and presentation of student work by institute resources person.

Legends:L- Lecture;**T**-Tutorial,**P**-Practical,**E**- Theory External, **M** - Theory Internal, **I**- Practical External, **V** - Practical Internal,

List of Documents to be prepared for Submission:

- 1. All 6 weeks Work Report Sheet signed by internal/external mentor from industry (suggested format given in syllabus).
- 2. Student Attendance Sheet Report for summer internship (suggested format given in syllabus).
- 3. Detail report duly signed and approved by the internal/external mentor from industry.
- 4. Presentation softcopy approved by the internal/external mentor from industry.
- 5. Poster of summer internship activities approved by the internal/external mentor from industry.

Note: Department Internship Program Coordinator/TPO should inform students in advance about Summer Internship-II as First six weeks will be as summer internship. So, a student needs to finalize offline training from industry before commencement of 5th semester and report at institute.

5. INTERNSHIP GUIDELINES:

The T&P cell of the department/college will arrange internship for students in industries/organization after fourth Semester or as per AICTE/ Gujarat Technological University (GTU) guidelines. The general procedure for arranging internship is given below:

Step 1: Request Letter/ Email from the office of Training & Placement cell of the department/college should go to industry to allot various slots of Summer Internship-II (6 weeks) during summer vacation after 4th semester as internship periods for the students. Students request letter/profile/ interest areas may be submitted to industries for their willingness for providing the training.

Step 2: Industry will confirm the summer internship-II slots and the number of seats allocated for internships via Confirmation Letter/ Email. In case the students arrange the summer internship-II themselves the confirmation letter will be submitted by the students in the office of Training & Placement cell of concerned department. Based on the number of slots agreed to by the Industry / University guideline, TPO in consultation with Head of the Department (HOD) will allocate the students to the industry. In addition, the Internship slots may be conveyed through Telephonic or Written Communication (by Fax, Email, etc.) by the TPO or other members of the T&P cell / Faculty members who are particularly looking after the Summer Internship-II of the students.

Step 3: Students on joining summer internship-II at the concerned Industry / Organization, submit the Joining Report/Letters / Email.

Step 4: Students undergo industrial training/ summer internship-II at the concerned Industry / Organization. In-between internship guide/supervisor evaluate(s) the performance of students once/twice by visiting the Industry/Organization or if field visit is not possible then he/she may contact students by video calling and evaluate accordingly.

Step 5: Students will submit training report after completion of internship to their internship guide/supervisor.

Step 6: Department will keep all the record of the students.

6. SUGGESTED STUDENT ACTIVITIES

Following are the suggested student-related curricular, co-curricular activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should perform following activities and prepare reports and give presentation in front of students and faculty members. They should also collect/record physical evidences for their (student's) portfolio which may be useful for their placement interviews:

- a) Perform various tasks given by industry resources person during offline internship.
- b) Summer Internship program Interns are required to give a presentation before the review committee consisting of a group of academic staff members.
- c) The review committee gives feedback and suggests possible improvements in the work.
- d) At the end of the program all the Summer Internship program Interns make a poster presentation of the work carried out. The poster presentation is open to the public. It is also evaluated by faculty members.
- e) A completion certificate will be issued to all Summer Internship program Interns only after the completion of internship tenure.

Semester V	Summer Internship-II(Course Code: 4350604)								
Semester v	POs and PSOs								
Competency & Course Outcomes	Disciplin e specific	PO 2 Proble m Analysi s	PO 3 Design/ develop ment of solutions	PO 4 Engineerin g Tools, Experimen tation &Testing	Engineeri ng practices for	Projec t Mana	PO 7 Life- long learni ng		
	Develop effective programming skills, problem-solving abilities, and technical knowledge to design and develop innovative solutions during gaining hands-on experience for professional								
Course Outcomes 1. Learn and adopt the engineer's role and responsibilities with ethics.	2	2	2	2	2	1	1		
2. Develop managerial skills required for business environment, operations, and procedures	1	1	1	1	1	3	2		

7. PO-COMPETENCY-CO MAPPING

3.	Understand the psychology of the workers and their habits, attitudes and approach to problem solving.	_	2	_	_	_	1	2
4.	Get possible opportunities to learn, understand and sharpen the technical skills required for technical advancement.	2	2	3	2	2	_	1
5.	Develop life-long learning skills for a successful professional career.	1	1	1	1	-	1	3

Legend: '**3'** for high, '**2**' for medium, '**1'** for low or '-' for the relevant correlation of each competency, CO, with PO/ PSO

8. INTERNSHIP EVALUATION:

Internship is an academic assignment and the grade will be determined based on the following criteria:

Course Requirements	Percent
External Mentors Evaluation	30%
Student Attendance Report	10%
6-week Worksheet Reports	20%
Internship Report preparation	20%
Presentation Evaluation/viva-voce	20%

Summer Internship-II Registration Form

				St	udent	Details					
Enrollment Number											
Student Name											
Student Details	Мо	Mobile Number:									
	Em	Email Address:									
Branch											
Institute Code and Name											
	Nar	ne:									
Mentor Details (Institute)	Designation:										
	Мо	bile Nc):								
	Em	ail Add	ress:								

	Name:
	Address:
Industry Details	Email:
	Phone:
	Website:
	Name:
Mentor Details	Designation:
(Industry)	Mobile No:
	Email Address
Mode of	
Internshi p Carried	Offline
Out	
Title of	
Internship	
carried out	
_	Construction/maintenance/repair/retrofitting/restoration/design/irrigation
Nature of Work Carried	/survey/soil/testing
Out	Other please Specify

Student's Signature

Internship Mentor's Signature

Summer Internship–II Suggested Letter for Completion

[Company/Institute/Department letterhead]

No:

Date

TO WHOM SOEVERITMAYCONCERN

This is to certify that, Mr. /Mrs.

Enrollment Number of Student

Has successfully completed a six-weeks Internship in the field of

From the date:______To date: _____

[90%Attendance is mandatory for completion of Internship]

During the period of his/her summer internship program with us, He/ She were exposed to following different activities/processes and were found sincere and hardworking.

1	_
2	
3	
4	

Internship Mentor Signature with stamp

SUMMER INTERNSHIP – II SUGGESTED 6 WEEK WORK SHEET REPORT						
Student Name:						
Enrollment No:						
Summer Internship						
Organization Name						
Address of Compan	ıy/					
Organization						
Student's Activity D	etails:					
Week Start Date to End		Tasks to be	Tasks to be	Remarks		
Number	Date	assigned	completed	incinal KS		

Signature of Company Person/mentor								
[TO BE FILLED BY INTERNAL INTERNSHIP GUIDE/FACULTY ONLY]								
Any Suggestion/Remarks								
Signature of Internal Internship Guide/Faculty								
SUGGESTED STUDENT ATTENDANCE SHEET REPORT								
RGANIZATION INFORMATION								
	Organization Name							
Organization Addre	SS							
Organization Email	ID							
		STU	IDENT INFORMATIO	N				
Name of Student:	Name of Student:							

Enrollment	No:			Name of	Course:			
Date of Commencement of					Date of Completion of			
training:					Training			
Internship Title								
Student's A	ttendance Sł	neet						
Week No	Day of week	Day1	Day2	Day3	Day4	Day5	Day6	Total Present days
Week 1	Date							_
	PR/AB Date							
Week 2	PR/AB							-
Week 3	Date							
	PR/AB							
Week 4	Date							
	PR/AB							
Week 5	Date PR/AB							_
	Date							
Week 6	PR/AB							_
			Total Cour	nt of stude	nt's preser	its during i	internship	
			Total Wo	orking days	s of compa	ny during i	internship	
			Studer	nt's percen	tage prese	nt during i	internship	
NOTE :1. Attendance sheet should be submitted after completion of training to internal internship mentor.								
Comments if any:								
Signature o	Signature of Company internship person with company stamp/seal:							
Name of Co	ompany interr	nship pers	on:					
Contact No	Contact No of Company internship person:							

SUGGESTED INDUSTRY SUPERVISOR EVALUATION OF INTERN

Student Name:	
Enrollment No:	
Internship Title:	
Company/ Organization Name:	

GTU - COGC-2021 Curriculum

Name of mentor:	
Date of Internship:	

Please evaluate your intern by indicating the frequency with which you observed the following behaviors:

Parameters	Needs	Satisfactory	Good	Very Good	Excellent
	improvement			Good	
Behaviors					
Performs in a dependable manner					
Cooperates with co-workers and					
supervisors					
Shows interest in work					
Learns quickly					
Shows initiative					
Produces high quality work					
Accepts responsibility					
Accepts criticism					
Demonstrates organizational skills					
Uses technical knowledge & expertise					
Shows good judgment					
Demonstrates creativity/originality					
Analyzes problems effectively					
Is self-reliant					
Communicates well					
Writes effectively					
Has a professional attitude					
Gives a professional appearance					
Is punctual					
Uses time effectively					

Overall performance of student (circle one): (Needs improvement/ Satisfactory/Good/Very good/Excellent)

Additional comments, if any:

Signature of Industry supervisor_____

SUGGESTED EVALUATION REPORT FOR INTERNAL MENTOR:

Student Name:	
Enrollment No:	
Internship Title:	

Company/ Organization Name:	
Name of mentor:	
Date of Internship:	

Presentation/Poster evaluation			
A. Poster/Rep	A. Poster/Report		
Clarity	Clearly expressed, easily understood, comprehensible.		
Relevance	Relevant, related to the matter at hand, to the point, focused.		
Organization Logically organized, structured, rational, coherent, and reasonable.			
Grammar Correct grammar usage and construction.			
B. Problem solving skills			
Define Conceptualizes problems in a workable and manageable manner.			
Analyze Breaks down into critical and significant components			
Formulate Creates and develops proposed modifications or solutions.			
Evaluate Validates the effectiveness of the proposed solutions.			

9. **REFERENCE**

• <u>AICTE Internship Policy.pdf (aicte-india.org)</u>

10. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

No.	Name and Designation	Institute	Email ID
1	Hiteshkumar T. Patel, Lecturer in Civil Engineering	K D Polytechnic, Patan	htpatel20@gmail.com
2	Devendrakumar N. Sheth, Lecturer in Civil Engineering	Government Polytechnic, Palanpur	devendra_civil@yahoo.com
3	Arvindkumar R. Patel, Lecturer in Civil Engineering	Government Polytechnic, Palanpur	arvindpatel19@gmail.com

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-V

Course Title: Advanced Construction Technology

(Course Code: 4350605)

Diploma programme in which this course is offered	Semester in which offered
Civil Engineering	5 th Semester

1. RATIONALE

Before taking this course on "Advanced Construction Technology," it is expected that students have already learned some basic concepts, principles, and important aspects of construction materials and technology in the third-semester course (Code: 4330603). This course builds on that knowledge and explores advanced aspects of construction technology to address the demands of the internal and globalized market for quality and faster completion of projects using modern techniques, waste materials, and mechanized construction.

The construction industry is constantly evolving, and today, high-capacity machines with better output and greater efficiency are needed to make the construction process less stressful. This course has been designed to equip diploma engineers with the necessary skills to use advanced construction technology effectively. With the knowledge gained in this course, students will be able to apply modern techniques and use modern and waste materials to improve construction quality and speed up project completion. They will also be able to leverage mechanized construction to reduce manual labour and increase efficiency. Overall, this course will provide students with the tools they need to succeed in today's construction industry.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Use advanced construction technologies.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

- a) To develop the conceptual knowledge of advanced construction material and concur knowledge of Waste products and Industrial byproducts.
- b) Students are able to appreciate various types of advanced and latest construction machineries, equipment, formworks and safety measures involved in construction works.
- c) Contribute either as an executioner or Supervisor in the special types of civil engineering construction aided with state of the art technology.

- d) Describe important aspects, operations and safety points pertaining to:
 - a. Drilling and Blasting
 - b. Coffer Dams
 - c. Caissons

4. TEACHING AND EXAMINATION SCHEME

Teachi	ng Sch	neme	Total Credits	Examination Scheme				
(In	Hours	s)	(L+T/2+P/2)	Theory Marks Practical Marks		Total		
L	Т	Р	С	CA	ESE	СА	ESE	Marks
3	-	2	4	30*	70	25	25	150

(*):Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are thesub-components of the COs.Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

S.	Practical Outcomes (PrOs)	Unit	Approx.
No.		No.	Hrs.
			required
1	Draw Sketches With Nomenclature and Short Details in Sketch	I, II,	Home
	book.	III,	Assignment
		IV	
	Plants and Equipment Used In Construction.	and	
	a. Earthmoving machineries	V	
	b. Equipment for excavation		
	c. Handling equipment		
	d. Hoisting equipment		
	e. Conveying equipment		
	f. Pumping equipment		
	g. Compacting equipment		
	h. Concrete vibrating equipment		
	i. Pile driving equipment		
	j. Plants for Grouting, Guniting.		
	k. Drilling equipment		
	I. Concrete and mixing plant		
	 Different types of coffer dams. 		
	Different types of caisson.		
	Crib and Trestle		
	Blast hole		

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
	Tunnel Formwork System		- 1
2	Prepare a report on use of Waste products and Industrial byproducts in bricks, blocks, concrete and mortar.	I	4*
3	Prepare a site visit report regarding your visit in which construction work of Multi storied buildings is going on with advanced Equipments and machineries stating list of it including its selection criteria and its advantages.	II	4*
4	Prepare a report on various admixtures used in Concrete.	III	2*
5	Prepare a report on Under water concreting in Bridge pier and bored pile.	Ξ	2*
6	Prepare a report on 3D Volumetric Construction.	IV	4*
7	Prepare a site visit report regarding your visit in which Equipment and machineries required for Foundation and Super structures of Bridges.	IV	4*
8	Prepare a site visit report regarding your visit in which deep foundation work is going on including type of deep foundation adopted and its selection criteria.	V	2*
9	Prepare a site visit report regarding your visit in which caisson/ cofferdam construction work is going on.	V	2
10	Prepare a site visit report regarding your visit in which drilling/ blasting work is going on.	V	4
11	Prepare a report on blasting process using various types of explosives.	V	2*
12	Topic of Seminar shall be given to a group of students. The students are required to submit and present/ defend the Seminar in presence of students and teachers and report including PowerPoint presentation to be attached with submission.	I, II, III, IV and V	4*
	Total		28

<u>Note</u>

i. More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.

ii. The following are some **sample** 'Process' and 'Product' related skills(more may be added/deleted depending on the course)that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

S. No.	Sample Performance Indicators for the PrOs	Weightage in %
	For PrOs 1	
1	Neatness, Cleanness in Sketch book	10
2	Uniformity in Drawing and line work	10
3	Creating given drawing	40
4	Dimensioning the given drawing and writing text	20
5	Answer the question	10
6	Submission of drawing in time	10
	Total	100

S. No.	Sample Performance Indicators for the PrOs	Weightage in %
	For PrOs 3, 7, 8, 9, & 11	
1	Discipline	10
2	Involvement during site visit	20
3	Data collection at site	20
4	Organization of report	20
5	Answer the question	10
6	Timely submission of report	20
	Total	100

S. No.	Sample Performance Indicators for the PrOs	Weightage in %			
For PrOs 2, 4, 5, 6, 10					
1	Data collection	20			
2	Write up, Grammar etc.	20			
3	Organization of report	20			
4	Answer the question	20			
5	Timely submission of report	20			
	Total	100			

S. No.	Sample Performance Indicators for the PrOs	Weightage in %		
For PrOs 12				
1	Initiative	20		
2	Data Collection	20		
3	Content of Presentation (Use of multi media)	20		
4	Presentation (Body Language- Gesture, Posture etc.)	20		
5	Answer the question	20		
Total		100		

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

These major equipments with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practical in all institutions across the state.

S. No.	Equipment Name with Broad Specifications	PrO.No.
1	Computer system (An computer system with basic configuration)	20

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs and PrOs. More could be added to fulfil the development of this competency.

- a) Work as a leader/a team member.
- b) Follow safe practice on site/ lab.
- c) Maintain tools and equipment.
- d) Follow ethical practices.
- e) Practice environmental friendly methods and processes. (Environment related)

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

Only the major Underpinning Theory is formulated as higher level UOs of *Revised Bloom's taxonomy* in order development of the COs and competency is not missed out by the students and teachers. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at Application and	
	above level)	
Unit – I Advanced Constructio n Materials	1a. Describe the features of special types of civil engineering materials. 1b.Explain different types of advanced building materials and their uses in construction 1c. Discuss properties of advance materials and by products. 1d. Miscellaneous materials Properties and uses of acoustics materials, wall claddings, plaster boards, Micro-silica, artificial sand, bonding agents, adhesives etc.	 1.1 Innovation in building materials is an unceasing reality of our construction industry. 1.2 advanced building materials 2.1 Plastics and PVC 2.2 Ceramic products 2.3 Paints and Varnish 2.4 Materials for damp proofing, water proofing 2.5 Materials for anti-termite treatment 2.6 Glass and fiber 2.7 Steel and iron materials 2.8 Materials used for false ceiling 2.9 Asbestoses 2.10 Concrete blocks 1.3 Admixtures and its Classification. 1.3.1 Admixtures and its benefits, Types of Admixtures - Accelerator and Retarder Plasticizer and Super Plasticizer Water roofing and Air entraining admixture
		1.4 Use of Waste products and Industrial byproducts in bricks, blocks, concrete and mortar.
Unit – II Miscellane ous machinerie s and Hoisting, Conveying Equipments	2a. Able to introduce different types of construction machinery, its features and Working.	 2.1 Purpose, advantages and disadvantages of Construction machinery. 2.2 Machineries used for earthwork and for other construction works. Mortar – Types & specific uses 2.2.1 Their details, special features, suitable uses, specifications.
Unit– III Advanced Concreting methods and Equipments	 3a. Explain about latest Developments in the field of concrete works. 3b. Under water Concreting for bridge piers and bored pile construction. 	3.1 Grouting, Guniting, Shotcrete: Terminology, applications, Materials, Proportioning and Properties, Dry- Mix Process, Wet- Mix Process, Auxiliary Equipment, Special Equipment, methods.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
0	(4 to 6 UOs at Application and	
	(4 to 6 UOS at Application and above level) 3c.Ready Mix concrete: Necessity and use of Ready Mix Concrete. Production and equipment's for RMC. 3d.Ready Mix Concrete plant. Conveying of RMC. Transit mixers- working and time of transportation. 3e.Workability and water cement ratio for RMC. Strength of RMC	 3.2 Special Concrete: Properties, uses and procedure of Roller compacted concrete. 3.2.1 Properties and uses of High Impact Resisting concrete. 3.2.2 Properties, uses and constituents of Steel fiber reinforced concrete. 3.2.3 Percentage of steel fibers in SFRC. 3.2.4 Effect of size, aspect, ratio and percentage of steel fibers on strength of concrete. 3.3 Flat slab technology. 3.4 Tunnel Formwork System. 3.5 3D Volumetric Construction. 3.6 Hybrid Concrete Construction. 3.7 Tremie method of underwater concreting: Procedure and equipment's required for tremie mothed. Properties, workability and
Unit– IV Advanced Technology in Constructio n	 4a. Describe Construction of Bridges and flyover work. 4c. Describe Construction of Multi storeyed buildings work. 4d. Select suitable type of Equipments and machineries for Multi storeyed buildings and Bridges. 4e. Explain 3D Printing in Construction. 4f. Select Geo synthetics for Strengthening of Embankments 	 method. Properties, workability and water cement ratio of the concrete required. 4.1 Construction of Bridges and flyover. 4.2 Equipment and machineries required for Foundation and Super structures of Bridges. 4.3 Construction of Multi storeyed buildings. 4.4 Equipments and machineries required for Construction of Multi storeyed buildings such as use of lifts, belt conveyors, pumping of concrete. 4.5 Equipments and machineries used for placing and jointing of pre fabricated elements. 4.6 Use of 3D Printing in Construction. 4.7 Strengthening of Embankments by soil reinforcing technique using geo synthetics
Unit– V Drilling, Blasting	5a. Explain the need of Drilling and blasting.5b. Select the appropriate	5.1 Drilling: Types, Drilling requirements, Selecting the drilling pattern for blasting

Unit	Unit Outcomes (UOs)	Topics and Sub-topics	
	(4 to 6 UOs at Application and		
	above level)		
and Special	Explosive materials and	5.2 Effect of air pressure on drilling	
Constructio	precautions required in storage	operation	
n	and in handling of explosives.	5.3 Bentonite/ mud slurry in drilling	
	5c. Describe drilling and blasting	5.4 Factors affecting the selection of	
	operations	drilling method and equipment	
	5d. Explain purpose, use, principles	5.5 Blasting: Explosives for blasting	
	of working and features of types of	(Dynamite, Blasting caps Primeline,	
	coffer dams.	Safety fuse, Stemming, Blast hole,	
	5e. Describe the selection criteria	ia Prime detonators etc.)	
	of types of coffer dams	5.6 Types of blasting: Process of using	
	5f. State the leakage points and	explosive, Precautions	
	suggest leakage prevention in	5.7 Storage of explosives	
	coffer dams.	5.8 Features of magazine building	
	5g. Describe the uses of caissons	5.9 Special Construction	
	and Classify the types of caisson.	 — Coffer dams: Types, 	
	5h. Explain method of sinking of	requirements, Selection	
	caissons.	criteria, Design features,	
	5i. Differentiate between	Leakage points and leakage	
	Cofferdams and caissons	prevention in coffer dams.	
		 Caissons: Materials used, 	
		Sinking loading of caissons.	

Note: The UOs need to be formulated at the 'Application Level' and above of Revised Bloom's Taxonomy' to accelerate the attainment of the COs and the competency.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Ma			Marks
No.		Hours	R	U	Α	Total
			Level	Level		Marks
Ι	Advanced Construction Materials	10	04	06	04	14
Ш	Miscellaneous machineries and	08	04	04	04	12
	Hoisting, Conveying Equipments					
111	Advanced Concreting methods and Equipments	10	04	06	06	16
IV	Advanced Technology in Construction	08	04	06	06	16
V	Drilling, Blasting and Special Construction	06	02	04	06	12
	Total	42	18	26	26	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions assess the attainment of theUOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may varyslightly from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated **co-curricular** activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Collect the information on Advanced Materials used in construction and prepare a report.
- b) Visit a nearby site, where advanced machineries are used and prepare a report.
- c) Prepare a report on advanced concreting methods.
- d) Explore latest technology adopted globally for Construction and prepare a report on it.
- e) Prepare seminar on relevant topic
- f) Prepare a report on Explosives used for Blasting in civil engineering projects.
- g) Undertake micro project.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No.* 4 means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.11*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on environ and sustainability.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be *individually* undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should *not exceed three.*

The micro-project could be industry application based, internet-based, workshopbased, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than **16** (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) **Green Solutions:** Prepare a report suggesting replacement of atleast 10 nos. of conventional advanced construction materials with Sustainable and Green Building Materials and justify it in terms of environmental impact.
- b) **Safety**: Prepare posters/ charts/ SOPs for the awareness of safety while operating miscellaneous machineries used in various activates of advanced construction.
- c) **Foundation**: Prepare a report on pile foundation being executed in any nearby structures.
- d) **Advanced Construction Technology**: Collect the information of recent technologies practiced in advanced construction and prepare a report on it.
- e) **Drilling and blasting:** Prepare a report on controlled blasting in civil engineering projects, and also describe the procedures to get the permissions of competent authorities along with Performa if any.
- f) **Drilling and blasting:** Prepare a report on drilling activity being executed for the work of blasting and also describe any alternative arrangement for the same.

13. SUGGESTED LEARNING RESOURCES

S.	Title of Book	Author	Publication with place, year and
No.			ISBN
1	Construction Technology	Atev. S.S.	Mir Publisher.
2	Building construction	S.C. Rangwala	Charotar Publishing House Pvt. Ltd.
			Anand
3	Building Construction	Arun Kumar Jain,	Laxmi Publication,
		Ashok Kumar Jain,	ISBN 10: 8131804283
		B.C. Punmia	ISBN 13: 9788131804285
4	Building Repair and	Gahlot. P.S.,	Edition 2005, CVS publication, ISBN
	Maintenance	Sharma Sanjay	10: 8123912439, ISBN 13:
	Management		9788123912431
5	Building Maintenance	Paul Wordsworth,	4th Edition, 2000, Wiley-Blackwell,
	Management	Lee	ISBN: 978-0-632-05362-9
6	Construction Dewatering	J. Patrick Powers,	ISBN: 978-0-471-47943-7, Wiley &
	and Groundwater	Arthur B. Corwin,	Sons, Inc., 3rd Edition.
	Control: New Methods	Paul C. Schmall,	
	and Applications	Walter E. Kaeck	
7	Ground Improvement	Raj Purushothama	Laxmi Publications, and ISBN:
	Techniques		9788131808573, Edition: First, 1999.
8	Ground Improvement	Moseley, M. P	Blackie Academic & Professional,
			Boca Raton, Florida, USA, ISBN
			0751400734, 084937717X, 1993
9	Construction Materials	D.N. Ghose	TATA Mc Graw Hill
10	Pile Foundations	Tomlinson	Longman Group, U. K.

14. SOFTWARE/LEARNING WEBSITES

- a) ww.nptel.iitm.ac.in
- b) http://www.asce.org/
- c) https://www.astm.org/
- d) https://www.concrete.org/

15. PO-COMPETENCY-CO MAPPING

Semester V	Advanced Construction Technology (Course Code: 4350603				350603))				
					POs and P	SOs				
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledg e	Probl em Analy	develop	Tools, Experiment	society,	PO 6 Project Manage ment		PSO 1	PSO 2	PSO 3 (If neede d)
<u>Competency</u>	•	Use	advar	iced const	truction tech	nologie	es.		-	
COurse Outcomes CO a) To develop the conceptual knowledge of advanced construction material and concur knowledge of Waste products and Industrial byproducts.	3	3	3	2	3	-	3	-	-	-
CO b)Students are able to appreciate various types of advanced and latest construction machineries, equipment, formworks and safety measures involved in construction works.	2	-	-	3	2	-	2	-	-	-
CO c) Contribute either as an executioner or Supervisor in the special types of civil engineering construction aided with state of the art technology.	2	2	2	-	3	2	3	-	-	-
CO d)Describe important aspects, operations and safety points pertaining to: a. Drilling and Blasting b. Coffer Dams c. Caissons	3	-	-	3	3	-	3	-	-	-

Legend: '3' for high, '2' for medium, '1' for low or '.' for the relevant correlation of each competency, CO, with PO/ PSO

17. COURSE CURRICULUM DEVELOPMENT COMMITTEE GTU Resource Persons

S. No.	Name and Designation	Institute	Contact No.	Email
1	Shri C. B. Patel	G.P. Ahmedabad	079-26301285	cbpatel@gpahmedabad.ac.in
2	Shri D. V. Patel	G.P. Ahmedabad	079-26301285	dvpatel@gpahmedabad.ac.in
3	Smt. D. B. Joshi	G.P. Gandhinagar	079-2328 7433	dbjgpg@gmail.com

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-V

Course Title: Highway Engineering

(Course Code: 4350606)

Diploma programme in which this course is offered	Semester in which offered
Civil Engineering	5 th Semester

1. RATIONALE

Road Transportation is the most effective and economical means of transportation in our country. Roads make a crucial contribution to economic development and growth and bring important social benefits. They are of vital importance in order to make a nation grow and develop. Agencies like NHAI, R&B and private organization are intensely involved in improving and building road networks. Construction of road is one of the major areas in which diploma holders in Civil Engineering may get very good opportunities for employment. The diploma holders are deals with construction and maintenance of highway. In order to professionally contribute to the field of highway engineering, the associated engineers must have adequate knowledge and skills relating to technical aspects of geometric design, alignment, quality of materials, construction process of road, new developments in road construction and use of modern and waste materials, techniques, design and maintenance of pavement. This course provides basic concepts regarding highway components, construction and maintenance practice.

2. COMPETENCY

This course is design to help the student to attain the following competency through various teaching learning experiences:

Undertake construction and maintenance of pavements.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

- a) Explain road development plan and role of various agencies associate in highway engineering.
- b) Design of road geometry as per IRC.
- c) Understand road construction materials and construction process of highway.
- d) Describe use of various road making machineries.
- e) Know basic features associate with hill road.
- f) Aware about advances in highway engineering.

4. TEACHING AND EXAMINATION SCHEME

Teach	ing Scł	neme	Total Credits	Examination Scheme					
(In	Hours	s)	(L+T/2+P/2)	Theory Marks Practical Marks Total			Theory Marks		Total
L	Т	Р	С	СА	ESE	CA	ESE	Marks	
3	-	2	4	30*	70	25	25	150	

(*):Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the sub-components of the COs. As they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
1	Draw minimum four sketches showing standard cross section of NH, SH, MDR, in embankment and cutting.	Π	02
2	Carry out minor filed project: Take road of minimum of 500 meter length. It should be included site selection, reconnaissance survey, fixing alignment and small cross drainage work, detailed profile survey along with alignment, cross section of the road and Cross drainage work. Prepare computer generated drawing of LS section of the road in cutting and filling.	11, 111	06
3	Calculate examples based on road geometry (Minimum 10 examples).	II	04
4	Draw line sketches of various road construction equipments. (Minimum 10 equipments).	IV	02
5	Prepare table for permissible value of various road (WBM/WMM/BC) construction material properties recommended by IRC.		02
6	 Visit of highway construction site and prepare report (following points should be include) 1) Understanding construction procedure of road. 2) Working of highway construction machineries including hot mix plant. 3) Inspection of road drainage condition. 4) Explore material testing laboratory available on site. 	III, IV, V	06
7	Demonstration of pavement evaluation machineries: Bump Integrator and Benkelman Beam (Not required to perform).	VI	02
8	Seminar based on following topics:	-	04

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
	Highway Material testing [*] , Highway Construction Machineries, Morden Tools and Techniques utilized in road construction, Road Maintenance Techniques, Construction of hill road, Software used in highway engineering and other topics suggested by faculty. *Weightage should be given for highway material testing.		
	Total		28

<u>Note</u>

- *i.* More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- *ii. The following are some* **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course)that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

S. No.	Sample Performance Indicators for the PrOs	Weightage in %
	For PrOs 1, 3, 4,	
1	Prepare drawing/sketches.	40
2	Neatness, accuracy in work and drawings.	20
3	Notation in the given drawing and writing text.	20
4	Answer the questions.	10
5	Submission of drawing in time.	10
	Total	100

S. No.	Sample Performance Indicators for the PrOs	Weightage in %
	For PrOs 2	
1	Calculate numerical based on given data.	50
2	Accuracy in calculation.	20
3	Draw sketches related to the example.	10
4	Answer the questions.	10
5	Submission of example in time.	10
	Total	100

S. No.	Sample Performance Indicators for the PrOs	Weightage in %
	For PrOs 5, 6, 7, 8, 9	
1	Participation in the site visit	40
2	Data collection during site visit	30
3	Technical involvement during site visit.	20
4	Preparation and submission of report.	10
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

Major equipments must be made available in all institutions across the state for practical performance as prescribed in curriculum of **Basic Transportation Engineering (4340604)**. These equipments are California Bearing Ratio, Impact Testing Machine, Los Angeles Abrasion Testing Machine, Ring and Ball Apparatus, Standard Penetrometer, Flash and Fire Point test. These apparatus utilized for demonstration in highway engineering.

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned Cos and PrOs. More could be added to fulfil the development of this competency.

- a) Work as a leader/a team member.
- b) Follow ethical practices.
- c) Practice environmental friendly methods and processes. (Environment related)

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

'Only the major Underpinning Theory is formulated as higher level UOs of *Revised Bloom's taxonomy* in order development of the COs and competency is not missed out by the students and teachers. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit		Unit Outcomes (UOs)	Topics and Sub-topics
Unit – I	1a.	Explain Highway	1.1. Scope and Importance of
Highway		Development in India	Highway in India.
Developments		considering future scope.	1.2. Road classification in India:
	1b.	Explain 20 year road	Nagpur Plan, Bombay Plan,
		development plan for India.	Lakhnow Plan.
	1c.	Describe functions of various	1.3. Concept of Smart Highways.
		agencies involved in highway	1.4. Role of various agencies for
		engineering.	planning, construction and
	1d.	Explain funding system for	maintenance of road (IRC, NHAI,
		highway.	R&B, MORTH, CRRI).
			1.5. Funding system of state
			government and central
			government for the road
			construction and development.
Unit – II	2a.	Explain various terms used in	2.1 Cross sectional elements: Right of
Highway		road geometry.	Way, Width of Carriageway, Road

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
Unit Geometric Design	Unit Outcomes (UOs) 2b. Explain road alignment. 2c. Draw various cross section of highway in embankment and cutting. 2d. Discuss various sight distance. 2e. Solve numerical based on highway geometry. 3a. To know the road materials and it's characteristics. 3b. Describe road construction method.	 Margins, Kerbs, Medians, Formation Width, Camber, Shoulders, Side Slope, Lateral and vertical clearance, Typical Cross- sections. 2.2 Road Alignment a) Horizontal Alignment: Design Speed, Super elevation, Horizontal curve, Widening on horizontal curve, Transition curve. b) Vertical Alignment: Road gradient, Vertical curves 2.3. Standard cross section of national highway in Embankment and Cutting. 2.4. Sight Distance: Stopping Sight Distance, Intermediate Sight Distance, Intermediate Sight Distance. 3.1 List various highway construction materials, give their characteristics. 3.2 Road pavement: Flexible and rigid pavement, typical cross-sections, functions of various components. Construction of WBM/WMM road, merits and demerits of WBM/WMM road. 3.3 Construction of Flexible pavement, types of bitumen
		WBM/WMM road. 3.3 Construction of Flexible
Unit– IV Highway Construction Equipment	4a. Discuss various machineries for road construction.	 4.1 Earthwork and transporting equipments: Dozer, Scraper, Grader, Tripper Truck. 4.2 Compaction Equipments:

Unit		Unit Outcomes (UOs)	Topics and Sub-topics
			 Shipsfoot Roller, Pneumatic Tyred Roller, Vibratory Roller, 4.3 Bituminous Hot Mix plants: Batch mixing plant, Drum Mixing plant, Cold mix Plant, Paver Finisher. 4.4 Batching and Mixing plant for Cement Concrete road construction.
Unit– V Hill Road	5a.	Describe components of hill road.	5.1 Hill road components and it's function.
	5b.	Discuss drainage and protection work on hill road.	5.2 Drainage of hill road, Side drainage, catch water drain, cross
	5c.	Explain causes of landslide and classification.	drain. 5.3 Landslide: Types, Causes and prevention
Unit– VI	6a.	Know different highway	6.1 Brief overview of Highway Design
Advances In		engineering design software.	Software: MX ROAD, IIT PAVED,
Highway	6b.	Discuss Recycled and	IIT GRID.
Engineering		innovative materials in	6.2 Uses of various Recycled and new
	Ch	pavement construction.	innovative materials in pavement
	6b.	Explain basic concept of Bituminous Mix Design.	construction. 6.3 Brief overview of bituminous mix
	6c.	Discuss Pavement Evaluation	design and marshal stability test.
	00.	Machineries.	6.4 Use of Bump Integrator,
			Benkelman Beam for pavement evaluation.

Note: The UOs need to be formulated at the 'Application Level' and above of Revised Bloom's Taxonomy' to accelerate the attainment of the COs and the competency.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Marks					
No.		Hours	R	U	Α	Total		
			Level	Level	Level	Marks		
I	Highway Developments	04	04	04	00	08		
II	Highway Geometric Design	12	02	06	10	18		
III	Highway Construction	14	02	08	10	20		
IV	Highway Construction Equipments	04	02	02	04	08		
V	Hill Road	04	02	04	02	08		
VI	Advances In Highway Engineering	04	02	02	04	08		
	Total	42	14	26	30	70		

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy)

Note: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary slightly from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated **co-curricular** activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Prepare seminar on relevant topic.
- b) Collect various drawing and other details related to road construction from R&B/NHAI department and prepare report on it.
- c) Undertake micro project related to highway construction.
- d) Search the software/freeware on the course content and learn it application.
- e) Observe the components of roadway nearby area and draw your observation sketches with necessary details.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No. 4 does not* means only traditional lecture method, different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning** but to be assessed using different assessment methods.
- e) With respect to *section No.10*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on environment and sustainability.
- g) Demonstrate through of video lecture construction work of rigid and flexible pavement.
- h) Expert lecture on latest software for highway engineering.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project is group-based. However, in the fifth and sixth semesters, it should be preferably be *individually* undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations

where groups have to be formed for micro-projects, the number of students in the group should *not exceed three*.

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than **16** (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Evaluate camber and gradient of a pavement in nearby area.
- b) Prepare model of ground profile of road in cutting and filling.
- c) Prepare computer generated drawing of longitudinal section of various road in cutting as well as filling.
- d) Generate report/output from the software related to highway engineering.
- e) Use and study different types of software related to highway.
- f) Prepare a model of smart highway.
- g) Draw dimensional cross section of rigid pavement and flexible pavement.
- h) Draw different types of road pattern.
- i) Prepare organization structure of various agencies related to highway.
- j) Prepare a map showing existing location of NH, SH & NE of India.
- k) Collect all the details of all types of existing NH, SH, NE across the country.
- I) Collect the information of ongoing major road construction across the India.
- m) Prepare documentary of WBM and BM road construction.
- n) Carryout market survey about alternative materials used in road construction.
- o) Prepare chart showing different types of road alignment.
- p) Collect typical sample of the drawings and legal documents required for road construction from nearby R & B/NHAI Office.
- q) Prepare report on methods of economic evaluation of highway projects.
- r) Prepare report on procedure of financing of road projects and administration of roads including road safety audit.
- s) Collect accidental data from nearby traffic department/RTO and technically analyse with respect to road design.
- t) Study application of different material like: Glass, Fiber, Plastic, Geo-Textiles, and Geo-Membrane in road construction.
- u) Explore Advance technique of maintenance and repairs of highway.
- v) Case study on landslides causes, prevention and control measure.
- w) Report on use of Geo-textile, Geo-grids and Geo-synthetics in construction of hill road.
- x) Prepare model of typical cross section showing details of typical hill road partially in cutting and partially in filling.
- y) Case study of land subsidence in hill road.
- z) Any other micro-project suggested by subject faculty.

13. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication with place, year and ISBN
1	Highway Engineering	Khanna S.K,	New Chand and Brothers,
		Justo C.E.G and	Roorkee, 2010,
		Veeraragavan A.	ISBN 978-8185240800
2	Principles and Practices of	Dr. L. R. Kadyali,	Khanna Pulishers, Delhi, 2013,
	Highway Engineering	Dr. N.B. Lal	ISBN 8174091653
3	Principles, Practices and	Dr. S. K. Sharma	S. Chand, & Company Pvt. Ltd.,
	Design of Highway		Delhi, 2012, ISBN 8121901316
	Engineering		
4	Highway Engineering	Bindra S. P.	Dhanpat Rai Publication Delhi,
			2008, ISBN 978-8189929862
5	A Textbook of Highway	Srinivasa Kumar	Orient Blackswan, 2011,
	Engineering		ISBN 978-8173716812
6	Highway Construction and	Avinash Gupta	Random Publication, 2017
	Maintenance		ISBN 978-9386314055
7	Laboratory Manual in	Ajay K Duggal,	New Age International Pvt. Ltd.
	Highway Engineering	Vijay P. Puri	ISBN 978-9386286703
8	IRC:37-2015, IRC:58-2015,	IRC	
	MORTH: Manual for		
	maintenance of road.		

14. SOFTWARE/LEARNING WEBSITES

- a) https://www.cadd.co.in/software/mxroad.php
- b) https://iit-pave-software91621.peatix.com
- c) https://morth.nic.in/
- d) <u>https://nhai.gov.in/</u>
- e) http://www.rnbgujarat.org/
- f) https://nptel.ac.in/
- g) <u>https://swayam.gov.in/</u>
- h) https://ts-nitk.vlabs.ac.in/List%20of%20experiments.html

15. PO-COMPETENCY-CO MAPPING

Semester V	HIGHWAY ENGINEERING (Course Code: 4350604)									
				POs	and PSOs					
Competency	Basic & Discipline	Probl em Analy	Design/ developmen t of	Engineering Tools, Experimentatio	society,	Project Managem	PO 7 Life- long learnin g	PSO 1	2	PSO 3 (If neede d)
Competency	Undertal	ke cons	truction and I	maintenance of p	pavements.					
(CO a) Explain road development plan and role of various agencies associate in highway engineering.	3	-	-	-	2	2	3			
(CO b) Design of road geometry as per IRC.	3	3	3	2	2	3	2			

(CO c) Understand road construction materials and construction process of highway.	3	2	2	3	3	3	3		
(CO d) Describe use of various road making machineries.	3	2	-	2	3	3	3		
(CO e) Know basic features associate with hill road.	2	2	-	2	2	2	3		
(CO f) Aware about advances in highway engineering.	2	2	2	2	2	2	3		

Legend: '3' for high, '2' for medium, '1' for low or '-' for the relevant correlation of each competency, CO, with PO/ PSO

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No.	Name and Designation	Institute	Contact No.	Email
1	Dr. V. P. Kukadia	G.P. Porbandar	0286-2220553	vijaykukadia1110@gmail.com
2	Miss P. P. Patel	G.P. Porbandar	0286-2220553	purvi2068@gmail.com
3	Dr. M. M. Vala	G.P. Porbandar	0286-2220553	monicaba.vala@gmail.com

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-V

Course Title: Irrigation Engineering

(Course Code: 4350607)

Diploma program in which this course is offered	Semester in which offered
Civil Engineering	5 th Semester

1. RATIONALE

Water is intentionally added to crops during irrigation. This agricultural method, especially in arid regions, enables plants to flourish when there is enough rainfall. It is also used in less arid areas to provide plants with the water they require when setting seeds. Agriculture, which continues to use irrigation more and more, uses about 66% of the world's water catchment. When there is a lack of natural water from rain, irrigation is the artificial technique of adding water to the soil to aid in preserving the landscape or growing agricultural products. In addition, irrigation can be used to avoid soil compaction, control weed growth in grain fields, and protect plants from frost, among other purposes in crop production.

Diploma holders in civil engineering are responsible for supervising the development, upkeep, and repair of canals, headworks, river training projects, cross drainage projects, and other projects. Some diploma holders are also employed to prevent waterlogging and tube well irrigation. This course covers hydrology, flow irrigation, storage, and distribution systems, head works construction features, river training works, cross drainage works, causes and mitigation of waterlogging, and tube well construction.

For a diploma civil engineer, basic knowledge of green building-related construction costs will be very useful. This course provides the necessary knowledge and skills to develop competency in the areas mentioned above professionally.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry-identified competency through various teaching-learning experiences:

• Impart knowledge about irrigation structures and irrigation systems in different phases.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge, and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

(a)Evaluate water requirement for crops and select suitable irrigation method for given Condition.

- (b) Explain methods to determine reservoir capacity.
- (c) Classify the components of dams and spillways.
- (d) Design most economical section of canal.
- (e) Describe process of evaluation of irrigation project.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total			Total Credits	tal Credits Examination Scheme						
(In	Hours	s)	(L+T/2+P/2)	Theory Marks		Practical Marks		Total		
L	Т	Р	С	СА	ESE	СА	ESE	Marks		
3	-	2	4	30*	70	25	25	150		

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate the integration of Cos, and the remaining 20 marks are the average of 2 tests to be taken during the semester for assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the sub-components of the Cos. Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
	Draw sketches of:		08
1	Methods of irrigation	=	
2	The layout of drip irrigation	=	
3	The layout of sprinkler irrigation	=	
4	Types of dams	IV	
5	Types of spillways	IV	
6	Cross sections of canal	V	
7	Cross drainage works	V	
	Solve Numerical from Given data to:		12
8	Compute Base period, duty and delta, GCA, CCA*	Ι	
9	Design of Sprinkler irrigation system*	П	
10	Design of Drip irrigation system*	Ш	
11	Calculate the reservoir capacity *	Ш	
12	Design of the most economical section of the canal*	V	
	Field Visit and Prepare Report:		04
13	Arrange Field visit to nearby Irrigation departments or irrigation project		
	Present in a Seminar:		
14	Select one topic of this subject in a group of four to five students and present it using modern teaching aids in Infront of teachers and students.		04
	Total		28

<u>Note</u>

- *i.* More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry-relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- *ii.* The following are some **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above-listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

S. No.	Sample Performance Indicators for the PrOs.	Weightage in %
1	Initiative of students in collecting data and computation	20
2	Use of appropriate methods while work in team/group	20
3	Comprehension and presentation skills in drawing	20
4	Follow up standard steps for design calculations	20
5	Presentation of seminar and Timely submission	20
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practice in all institutions across the state.

S. No.	Equipment Name with Broad Specifications	PrO. No.
1	Drawing instruments	1 to 7
2	Computing devices	8 to 12

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above-mentioned COs and PrOs. More could be added to fulfil the development of this competency.

- a) Work as a leader/a team member.
- b) Follow ethical practices.
- c) Practice environmentally friendly methods and processes. (Environment related)

The ADOs are best developed through the laboratory/field-based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

Only the major Underpinning Theory is formulated as higher level UOs of *Revised Bloom's taxonomy* in order for the development of the COs and competency is not missed out by the

students and teachers. If required, more such higher-level UOs could be included by the course teacher to focus on the attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at Application and	
	above level)	
Unit-I	1a. Justify the necessity and scope	2.1 Necessity of Irrigation
Introduction	of Irrigation engineering.	2.2 Scope of Irrigation
& water		2.3 Historical development of irrigation
requirement	1b. Understand historical	in India
of crops	irrigation development in India.	 2.4 Types of irrigation projects in India. 2.5 Duty, Delta, Base period, Net
	1c. Illustrate various terminology	irrigation requirement, Intensity of
	regarding irrigation and soil water	irrigation, Gross Command area,
	plant relationship.	Culturable command area, Crop period, Core depth, Soil-water-plant
	1d. Identify the application of	relationship, wilting point.
	irrigation water and its	2.6 Consumptive use of water
	assessment	2.7 Various methods of application of irrigation water
		2.8 Benefits and ill effects of irrigation
		2.9 Assessment of irrigation water.
Unit-II	2a. Classify methods of irrigation	2.1 Classification of irrigation
Methods of	and their suitability.	2.2 Surface and Subsurface Irrigation
Irrigation		Methods
	2b. Differentiate between	2.3 Sprinkler Irrigation and Drip
	Sprinkler and Drip irrigation and	Irrigation, Need, components and
	its pros and cons	layout
		2.4 Precautions and Maintenance of
		Sprinkler and Drip irrigation system
Unit-III	3a. Describe surveys carried out	3.1 Surveys carried out for irrigation
Reservoir	for irrigation project and its data	Projects and data collection.
Planning,	collection	3.2 Methods of calculating capacity of
Water		Reservoir
Logging and	3b. Explain methods of computing	3.3 Area capacity curve
Land	capacity and reservoir and its	3.4 Silting of the reservoir
reclamation	control	3.5 Factors affecting silting
	20 State water logging and land	3.6 Waterlogging and its Effects
	3c. State water logging and land reclamation with its effects	3.7 Remedial measures of waterlogging 3.8 Land Reclamation and its Effects
Unit-IV	4a. Explain various types of dams	4.1 classification of dams
Dams and	and its site selection criteria	4.1 Classification of dams 4.2 Factors affecting in the selection of
Spillway		site for the dam
	4b. Distinguish between earthen	4.3 Earthen dam, Gravity dam & its cross
	dam and gravity dam	sections, components, seepage through
		embankment and foundation with its
	4c. State the failures of earthen	control

		
Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at Application and	
	above level)	
	dam and preventive measures	
		4.4 failures of earthen dam and its
	4d. Illustrate different types of	preventive measures
	spillways and its suitable location	
		4.5 Types and Components of spillways
		and its suitability Criteria
		4.6 Energy dissipators
Unit-V	5a. Classify canals according to	5.1 Classification of canals according to
Canal	alignment and position	alignment and position
Irrigation &		
cross	5b. Design the most economical	5.2 cross-sections of canal in
drainage	section of the canal	embankment with partially cutting and
works		partially filling.
	5c. Explain canal lining and its	
	purpose	
		with its design.
	works and canal regulators	
		and its properties, advantages
		E E cross drainage works: Aqueduct
		ci ossing
		5.6 canal head regulators and cross
		_
		0
Unit-VI	6a. Describe the main criteria for	6.1 theory for water evaluation for
Evaluation		-
	0	, , , , , , , , , , , , , , , , , , ,
-		6.2 methodology for Estimation of
	6b. Explain the process of	hydraulic investment
	evaluation of the irrigation	
	project	6.3 Result of methodology
	6c. State the case study of the	6.4 Case study of irrigation project
	irrigation project.	
Unit-VI Evaluation of irrigation projects	purpose 5d. Identify various cross drainage works and canal regulators 6a. Describe the main criteria for the evaluation of the irrigation project 6b. Explain the process of evaluation of the irrigation project 6c. State the case study of the	hydraulic investment 6.3 Result of methodology

Note: The UOs need to be formulated at the 'Application Level' and above of Revised Bloom's Taxonomy' to accelerate the attainment of the COs and the competency.

Unit	Unit Title	Teaching	Distri	bution o	f Theory	Marks
No.		Hours	R	U	Α	Total
			Level	Level		Marks
I	Introduction and Water requirement of crops	08	4	4	4	12
П	Methods of irrigation	07	2	4	6	12
111	Reservoir planning, water logging, and land reclamation	10	4	6	6	16
IV	Dams and spillways	06	2	4	4	10
V	Canal irrigation and cross-drainage works	07	4	4	4	12
VI	Evaluation of irrigation projects	04	0	4	4	8
	Total	42	16	24	30	70

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist students in their learning and to teachers to teach and question paper designers/setters to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U, and A) in the question paper may vary slightly from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated **co-curricular** activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- (a) Prepare Model of Dams and Spillways
- (b) Prepare model of Cross drainage works

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) **'L' in section No. 4** means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.11*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.

- f) Guide students on how to address issues on environ and sustainability
- g) Expert lecture by practicing valuer on Valuation techniques, methods and criteria of any property.
- h) Expert lecture on latest software for Estimating and costing

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be *individually* undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should *not exceed three.*

The micro-project could be industry application based, internet-based, workshopbased, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than **16** (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industryoriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- (a) Automated irrigation system using IoT Technology
- (b) Design of sprinkler/Drip irrigation system
- (c) Analysis of ground water quality for irrigation
- (d) Development of Solar powered irrigation system
- (e) Optimization of water use for irrigation through crop water requirement Estimation
- (f) Development of Smart irrigation system

13. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication with place, year, and ISBN
1	Irrigation theory and	A.M. Mitchel	Vikas Pub. House Pvt. Ltd, Delhi.
	practice		ISBN: 9780706924848, 2008
2	Irrigation, Water	Dr. P.N. Modi	Standard Book House,
	Resources, and Water		Delhi. ISBN: 9788189401290, 2008
	Power Engg.		
3	Hydrology and Water	R.K. Sharma	Dhanpat Rai and Sons,
	Resources		Delhi. 1987
4	Hydrology and Water	S. K. Garg	Khanna Pub., Delhi.
	Resources Engg.		ISBN: 8174090614, 2015 edition
5	Watershed management	J.V.S. Moorthy	Willey Eastern Ltd.
	in India		ISBN: 8122435181, 2017
6	Water Resources Engg-	C. Satyanarayan	New Age International

S. No.	Title of Book	Author	Publication with place, year, and ISBN
	Principles and Practice	Murthy	Ltd., New Delhi ISBN: 9788122413823

14. SOFTWARE/LEARNING WEBSITES

- a) www.guj-nwrws.gujarat.gov.in
- b) www.swhydrology.gujarat.gov.in
- c) www.nptel.ac.in

15. PO-COMPETENCY-CO MAPPING

Semester IV	ESTIN	ΛΑΤΙΝΟ	G, COST	NG & VA	LUATION	(Cour	se Cod	e:)
	POs and PSOs									
Competency & Course Outcomes			developm	Tools, Experiment	practices for	Project	PO 7 Life-long learning	PSO 1	PSO 2	PSO 3 (If neede d)
Competency	-	t knowl erent p	-	oout irrig	ation strue	ctures	and irr	igatio	n syst	ems
CO(a) Evaluate water requirements for crops and select suitable irrigation methods for given conditions.	3	3	-	-	1	-	-			
CO(b) Explain methods to determine reservoir capacity.	3	3	-	-	-	-	-			
CO(c) Classify the components of dams and spillways.	3	1	-	-	1	-	-			
CO(d) Design most economical section of canal.	3	3	2	-	-	-	2			
CO(e) Describe process of evaluation of irrigation project.	3	-	-	-	1	1	1			

Legend: '3' for high, '2' for medium, '1' for low or '-' for the relevant correlation of each competency, CO, with PO/ PSO

17. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No.	Name and Designation	Institute	Contact No.	Email
1	Shri D. H. Dalal	GPG Ahmedabad 9428858913		dhdalal@gmail.com
2	Shri A. K. Popat	RCTI, Ahmedabad 9825443501		anilkpopat@gmail.com
3	Shri A. R. Desai	Sir BPTI, Bhavnagar 7878246020		desaiakshay1989@gmail.com

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-V

Course Title: Environment Engineering and Pollution Control (Course Code: 4350608)

Diploma program in which this course is offered	Semester in which offered
Civil Engineering	5 th Semester

1. RATIONALE

After learning basic concepts of Environmental Engineering in second semester, this subject is introduced as an elective subject in 5th semester for all those students who are willing to study some advanced topic related to environment. This subject includes causes and preventive measures of different types of pollution, treatment processes for water and wastewater, solid waste separation and their disposal methods, environmental audits and environmental impact assessment. Environment is a global issue and environmental impact assessment is compulsory for all industries and major infrastructure projects. Therefore, this subject has been designed in such a way that students will have advanced knowledge of land survey, waste management, inspection and testing, environmental audit etc. and they can have career opportunities in this area.

2. COMPETENCY

The aim of this course is to help the students to attain the following industry identified competency through various teaching learning experiences:

• Diagnose and manage environment related issues.

3. COURSE OUTCOMES (COs)

The theory should be taught and the exercises should be done in a way that allows students to illustrate the course objectives by demonstrating various learning outcomes in the cognitive, psychomotor, and affective domains to demonstrate following courses outcomes.

- [1] Suggest suitable methods for biodiversity conservation.
- [2] Identify sources of pollution and use standards for measurement and prevention of Water, Air & Noise pollution.
- [3] Suggest advanced wastewater treatment processes according to the quality of wastewater.
- [4] Identify and segregate solid waste and suggest suitable method for proper disposal.
- [5] Interpret findings of Environmental Impact Assessment (EIA)and suggest suitable steps for reducing the pollution in the given situation.

4. TEACHING AND EXAMINATION SCHEME

Teachi	ing Scł	neme	Total Credits	Examination Scheme				
(In	Hours	s)	(L+T/2+P/2)	Theory Marks Practical Marks			Total	
L	Т	Р	С	CA	ESE	СА	ESE	Marks
3	0	2	4	30*	70	25	25	150

(*):Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate the integration of COs, and the remaining 20 marks is the average of 2 tests to be taken during the semester for assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the Sub-components of the COs. Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
1	Determine pH value of water sample	II	2*
2	Determine Turbidity of water sample	П	2*
3	Determine B.O.D. of domestic wastewater sample	II	2*
4	Determine concentration of Fine Particulate matter PM(2.5) in ambient air	II	2*
5	Determine concentration of Respirable Suspended Particulate Matter PM(10) in ambient air	II	2*
6	Measurement of noise at different sources using Sound meter	П	2*
	Draw labelled sketch of:	II	4*
7	Wastewater treatment plant		
8	Membrane filtration	Ш	
9	Advanced Oxidation Processes (AOPs)		
10	 Biological Nutrient Removal (BNR) 		
11	 Membrane Bioreactors (MBRs) 		
12	Advanced Sludge Treatment		
13	Constructed Wetlands		
14	 Mechanical Processing for materials recycling : Magnetic Separation , Optical Sorting, Screening 	IV	
15	 Waste Heat recovery from flue gases, Waste heat Recovery boilers. 	IV	
	Visits		
16	GPCB Laboratory	/	2*
17	Industry where stake-sampling can be carried out.	II	2*
18	Solid waste Management Plant	IV	2*
19	Sewage Treatment Plant		2*
20	Seminar		4*
	Total		28

<u>Note</u>

- *i.* More *Practical Exercises* can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- *ii. The following are some* **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

S. No.	Sample Performance Indicators for the PrOs	Weight age in %				
	For PrOs 1 to 6					
1	Identify components	10				
2	Prepare experimental setup	20				
3	Operate the equipment setup	20				
4	Follow safe practices	10				
5	Record observations correctly	20				
6	Interpret the result and conclude	20				
	Total	100				

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment's with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practical in all institutions across the state.

S. No.	Equipment Name with Broad Specifications	PrO. No
1.	Combo PM_{10} and $PM_{2.5}$ sampler with size selective inlet for PM_{10} and	4,5
	automatic volume inflow control, filter jacket, flow measuring	
	device to control the air flow.	
2	BOD Incubator: Double walled construction with PUF thermal	3
	insulation, 5 degree Centigrade to 60 degree Centigrade	
	Temperature range, Chamber Volume above 200 Liters, Glasswares,	
	Chemicals and D.O.Meter.	
3	Digital pH meter: pH range 0 to 14.00 pH, Resolution 0.01pH,1 mV,	1
	LED display with pH electrode (0 to 14pH), buffer tablets , stand and	
	clamp and Glasswares.	
4	Digital Nephelometric Turbidity Meter:90 degree scattered light	2
	measurement nephelometer, highest value for turbidity in NTU	
	range 1000, Resolution 0.01 and with glass cells.	
5	Digital Sound Level Meter.	6

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above-mentioned Cos and PrOs. More could be added to fulfil the development of this competency.

- a) Demonstrate working as a leader/a team member.
- b) Follow safety practices on site.
- c) Follow ethical practices.
- d) Practice environmental friendly methods and processes. (Environment related)

The ADOs are best developed through the laboratory/field-based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. **UNDERPINNING THEORY** Only the major Underpinning Theory is formulated as higher level UOs of *Revised Bloom's taxonomy* in order for the development of the COs and competency is not missed out by the students and teachers. If required, more such higher-level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
Unit – I	1.a State importance of	1.1 Importance of Environmental engineering
Introduction	Environmental Engineering	1.2 Component of Environment
&	1.b State components of	i Atmosphere
Environment	Environment.	ii Hydrosphere
problems,	1.c Elaborate Ecology and	iii Lithosphere
Emerging	Ecosystem	iv Biosphere
Technologies		1.3 Need for public awareness
for	1.d Use Ecological "pyramid "	1.4 Concept of Ecology
Environment	concept of numbers ,	1.5 Ecosystem
Engineering	Biomass, Energy	1.6 Components of Ecosystem
	1.e Use Emerging technologies	i Abiotic
	for Environment	ii Biotic
	management	1.7 Balanced Ecosystem
		1.8 Ecological Pyramid
		i Pyramid of Numbers
		ii Pyramid of Biomass
		iii Pyramid of Energy
		1.9 Biochemical Cycle
		i Hydrological cycle
		ii Nitrogen Cycle
		iii Phosphorus cycle
		iv Sulphur cycle
		1.11 Biodiversity
		1.12 Emerging technologies for
		environment management
		i Hydrogen fuel cell usage
		ii Plant your roof
		1.13 Ocean thermal energy conversion

Unit -II	2.a Identify sources of land	2.1 Definition of Dellution types Natural
Environmental	pollution and take preventive	2.1 Definition of Pollution, types – Natural
Pollution & its	measures for reduction	and Artificial. 2.2 Land Pollution
remedial	2.b Identify sources of Water	
measures	pollution and take preventive	2.2.1 Causes
	measures for reduction	2.2.2 Effects and preventive measures.2.3 Water Pollution
	2.c Identify sources of Air pollution	2.3.1 Sources of water
		2.3.2 Water pollutants from different
	and take preventive measures	sources, effects on environment.
	for reduction.	2.3.3 Preventive measures.
	2.d Identify sources of Noise	2.3.4 IS Standards for water quality.
	pollution and take preventive	2.3.5 Flow diagram of water treatment
	measures to reduce noise in	plant, water conservation.
	buildings.	2.3.6 Determination of pH value &
	2.e Use standards to measure	Turbidity of water sample.
	Water, Air & Noise pollution.	2.4 Wastewater
	2.f Identify Characteristics of Solid	2.4.1 Generation (Domestic and Industrial)
	,	2.4.2 Hazardous effects
	waste, Bio-medical waste & E-	2.4.3 Flow diagram of sewage treatment
	waste and segregate them for	plant.
	proper disposal.	2.4.4 CPCB and GPCB norms for sewage
		disposal.
		2.4.5 Determination of BOD & COD of
		domestic wastewater sample.
		2.5 Air Pollution
		2.5.1 Causes
		2.5.2 Effects
		2.5.3 Prevention
		2.5.4 Air Pollutants: Particulate pollutants,
		Ambient Air quality standards, Stack and Ambient air sampling
		2.5.5 CPCB and GPCB norms for Air
		Pollution.
		2.5.6 Determination of concentration of
		Fine Particulate matter PM(2.5) &
		Respirable Suspended Particulate
		Matter PM(10) in ambient air.
		2.6 Noise Pollution
		2.6.1 Sources
		2.6.2 Effects
		2.6.3 Measurement of Noise and Control of
		Noise Pollution & CPCB and GPCB
		norms for Noise Pollution.
		2.6.4 Measurement of noise at different
		sources using Sound meter.
		2.7 Municipal Solid Waste, Bio-Medical waste
		and E-waste - sources, generation,
		characteristics, effects and methods to
		manage.

		2.1 Introduction to Masteriator Management		
Unit– III	3.a State advanced wastewater	3.1 Introduction to Wastewater Management 3.1.1 Definition of wastewater		
Advanced	treatment.			
Waste Water	3.b Identify components of	3.1.2 Importance of wastewater management		
Treatment	wastewater treatment Process.	3.1.3 Overview of wastewater treatment		
Technology	3.c Suggest suitable method of			
reemology	wastewater treatment process	3.2 Wastewater Treatment Processes		
	according to Emerging	3.2.1 Basic Concept of		
	Technologies and future trends.	i Preliminary treatment:		
	recimologies una ratare trenas.	ii Secondary treatment:		
		iii Tertiary treatment: nutrient		
		removal		
		3.3 Methods of Advanced treatment		
		processes:		
		i Membrane filtration,		
		ii Advanced Oxidation Processes		
		(AOPs)		
		iii Biological Nutrient Removal		
		(BNR)		
		iv Constructed Wetlands		
		v Membrane Bioreactors (MBRs)		
		vi Electrochemical Processes		
		vii Advanced Sludge Treatment		
		viii Advanced Monitoring and		
		Control Systems 3.4 Emerging Technologies and Future Trends		
		3.4.1 Innovative wastewater treatment		
		technologies.		
		3.4.2 Resource recovery and sustainability		
		in wastewater management.		
		3.4.3 Challenges and opportunities in the		
		field.		
Unit – IV	4.a Differentiate Recycling &	4.1 Introduction of Recycling & Reuse of solid		
Solid Waste-	Reuse.	waste:		
Separation		4.1.1 Concept		
-	4.b State the Heat Recovery from	4.1.2 Application		
and Disposal	flue gases, Waste heat	4.2 Mechanical Processing for materials		
	Recovery boilers.	recycling :		
	4.c Identify and segregate	4.2.1 Size Reduction: shredding, grinding,		
	different solid wastes	or crushing		
	considering relevant	4.2.2 Sorting and Separation:		
	-	i Magnetic Separation		
	standards/policies.	ii Eddy Current Separation: iii Air Classification		
	4.d Suggest suitable method for	iii Air Classification iv Optical Sorting		
	proper disposal of solid waste.	v Screening		
		vi Agglomeration		
		vii Densification		
		viii Washing and Cleaning		
		ix Deinking		
		x Refining and Purification		
	1	- 0		

		4.3 Waste Heat recovery from flue gases,				
		Waste heat Recovery boilers.				
		4.4 Methods for proper disposal of solid waste				
		- Land fill, Incineration & Vermicomposting				
Unit– V	5.1 Justify necessity of	5.1 Environmental Audit				
Environmental	Environmental audit for the	5.1.1 Necessity				
Audit and	given purposes	5.1.2 Norms.				
Environment	5.2 Carry out Environmental	5.2 Types of Audit				
Impact	audit of the given building.	5.2.1 Objective based types				
Assessment	5.3 Carry out process of EIA for	i Liabilities audit,				
		ii Management audit,				
(EIA)	given building.	iii Activities audit				
	5.4 Interpret findings of EIA and	5.2.2 Client-driven types				
	suggest suitable steps for	i Regulatory external audit				
	reducing the pollution in the	ii Independent external audit				
	given situation.	iii Internal audit and third-party				
		audit				
		5.3 EIA				
		5.3.1 Purpose of EIA				
		5.3.2 Regulations, steps in EIA process				
		5.3.3 Benefits of EIA				
		5.3.4 Limitations of EIA				
		5.3.5 Environmental clearance for the civil				
		engineering projects.				

Note: The UOs need to be formulated at the 'Application Level' and above of Revised Bloom's Taxonomy' to accelerate the attainment of the COs and the competency.

8. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN

Unit	Unit Title	Teaching	Distri	Distribution of Theory Marks			
No.		Hours	R	U	Α	Total	
			Level	Level		Marks	
Ι	Introduction & Environment problems, Emerging Technologies for Environment Engineering.	8	3	3	6	12	
=	Environmental Pollution & its remedial measures.	12	3	6	9	18	
	Advanced Waste Water Treatment Technology.	8	3	5	6	14	
IV	Solid Waste - Separation and Disposal	8	3	5	8	16	
V	Environmental Audit and Environment Impact Assessment (EIA)	6	2	3	5	10	
	Total	42	14	22	34	70	

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist students in their learning and to teachers to teach and question paper designers/setters to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U, and A) in the question paper may vary slightly from the above table.

9. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, the following are the suggested studentrelated *co-curricular* activities that can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct the following activities in groups and prepare reports of about 5 pages for each activity, also collect/record physical evidence for their (student's) portfolio which will be useful for their placement interviews:

- a) Comparative study of RO systems available in nearby shops/dealers with photos.
- b) Find the New Emerging technology for Environmental Management.
- c) Visit Environment Consultant and carry out environmental audit with him and prepare report.
- d) Collect photos and prepare report on segregation of solid/hazardous waste generated in nearby Hospital and their disposal site
- e) Prepare report on Case study on Methods of Advanced treatment processes: Membrane filtration, Advanced Oxidation Processes (AOPs) etc.
- f) Visit dumping site of solid waste treatment plant and prepare report on material recovery facility of dry waste, Biomethanation plant and organic waste compost machine.
- g) Collect photos and prepare report on SCADA (Supervisory Control and Data Acquisition) operated treatment plant.
- h) Collect list of NGOs working for environmental protection and prepare a report on their contribution.

10. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub M topics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No. 4* means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.11*, teachers need to ensure the creation of opportunities and provisions for *co-curricular activities*.
- *f*) Guide students on how to address issues on environmental and sustainability
- g) Expert lecture by water resource engineer about the emerging scenario of this field or industry experts

11. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her at the beginning of the semester. In the first four semesters, the micro-project is

group-based. However, in the fifth and sixth semesters, it should preferably be *individually* undertaken to build up the skill and confidence in every student to become a problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should *not exceed three.*

The micro-project could be industry application based, internet-based, workshop-based, laboratory-bawd, or field-based. Each macro-project should encompass two or more Cos which are in fact, integrations of PrOs, UOs and ADOs. Each student will have to maintain a date work diary consisting of individual contributions to the project work and given seminar presentation of it before submission. The total Duration of the micro-project work should not be less than 16 [sixteen] student engagement hours during the course. The student ought to submit a micro-project by the end the semester to develop the industry-oriented Cos.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Collect sample of raw sewage and treated sewage from sewage treatment plant and find the quality of treated wastewater by performing different tests.
- b) Visit any nearby industry and carry out Air sampling and measure particulate pollutants and different gases and make the report for same.
- c) Visit nearby PUC Centre and collect data of vehicular pollution.
- d) Measure noise pollution using android application at various locations of institute building and city.
- e) Collect sample of raw water and treated water from filter plant and find the quality of treated water by performing different tests.
- f) Prepare a technical summary of Municipal Solid Waste types, Generation, Collection System, Dumping Methods, Bio degradable waste.
- g) Case study of Recycle and Reuses of Mechanical Processes for materials
- h) Prepare presentations on emerging topics or from the theory related to environmental engineering.

S. No.	Title of Book	Author	Publication with place, year, and ISBN
1	New Technologies and Environmental Innovation	Joseph Huber	Edward Elgar ISBN- 9781843767992
2	Environmental Noise pollution, Causes, Evils	Vijendra Mahandiyan	Deep & Deep Publications Pvt. Ltd, Ned Delhi, ISBN: 81-7629-830-1
3	Air Pollution	M N Rao H V N Rao	TATA McGraw Hill Publication ISBN: -10. 9780074518717
4	Water pollution	B.K.Sharma	GOEL Publishing house, Meerut ISBN-10 : 8182831768
5	Text Book of Environmental Engineering	P.Venugopala Rao	PHI Learning Pvt.Ltd. ISBN : 9789390669240
6	Waste water treatment : advanced processes and technologies	D.G Rao R. Senthilkumar J. Anthony Byrne S.Feroz	CRC Press ,Taylor & Francis Group ISBN 13:978-178040-034-1

12. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication with place, year, and ISBN
7	Environment Engineering: A	Acrdio P. Sincero &	TATA McGraw Hill Publication
	Design Approach	Gregoria A. Sincero	ISBN-
8	An Introduction to	Kevin T. Pickering &	Routledge , ISBN: 0 -415-16664-0
	Global Environmental Issues	Lewis A. Owen	
9	Solid Waste Management	Surendra Kumar	Northen Book Center New Delhi
			ISBN:81-7211-278-5
10	Recycling and Resource	Richard Ian Stessel	Springer Publication
	Recovery Engineering :		ISBN 13 :978 - 3-642-80221-8
	Principle of waste		
	processing		
11	Environmental impact	R.R Bathwal	New Age International Publishers
	assessment		ISBN:81-224-1357-9

13. **SOFTWARE/LEARNING WEBSITES**

- 1. <u>https://archive.nptel.ac.in/courses/</u>
- 2. Virtual Lab by Ministry of Education, Government of India <u>https://www.vlab.co.in/</u>
- 3. <u>https://www.youtube.com/watch?v=2s2b5-EsmV0</u>
- 4. <u>https://gpcb.gujarat.gov.in/</u>
- 5. <u>https://www.cpcb.nic.in/</u>
- 6. <u>https://moef.gov.in/en/</u>

5. PO-COMPETENCY-CO MAPPING

Semester IV		ENVIRONMENT ENGINEERING AND POLLUTION CONTROL									
		(Course Code: 4350608)									
					POs a	nd PSOs					
	Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge	_	PO 3 Design/ development of solutions	Engineering	PO 5 Engineering practices for society, sustainability & environment			PSO 1	PSO 2	PSO 3 (If needed)
	<u>Competency</u>	• Diag	nose and	l manage ei	nvironment re	lated issues	•				
CO a)	Suggest suitable methods for biodiversity	3				3		3			
CO h)	conservation. Identify sources of										
	pollution and use standards for measurement and prevention of Water, Air & Noise pollution.	3	3		3	3		3			
CO c)	Suggest advanced wastewater treatment processes according to the	3	2	2		3		3			

quality of wastewater.								
CO d) Identify and segregate solid waste and suggest suitable method for proper disposal.	2	3	2	 3	2	3		
CO e)Interpret findings of Environmental Impact Assessment (EIA) and suggest suitable steps for reducing the pollution in the given situation.	3		2	 3	3	3		

Legend: '3' for high, '2' for medium, '1' for low or '-' for the relevant correlation of each competency, CO, with PO/ PSO

17. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No.	Name and Designation	Institute	Contact No.	Email
1	Mr. R.S. Oza	Govt. Polytechnic, Jamnagar	9426994979	rahuloza.engg@gmail.com
2	Miss Krishna P. Vajaria	L.E. College, Morbi (Diploma)	9426423407	krishna.vajaria@gmail.com

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester – V

Course Title: Advance Analysis of Structures (Course Code: 4350609)

Diploma programme in which this course is offered	Semester in which offered
Civil Engineering	5 th Semester

1. RATIONALE

After learning analysis of determinate structures in semester-III, this elective subject is introduced in 5th semester for those students willing to excel in the structural engineering field. This subject incorporates introduction to indeterminate structures and analysis of indeterminate structural members like fixed beam, continuous beam and portal frame. Analysis of column sections, dam and retaining wall subjected to eccentric loading and checking very important parameter of no tension condition is included. Analysis of structural members under the effect of principal stresses & strains is also incorporated to give an exposure of compound stresses to the students. To keep pace with advanced technology, exposure to computer aided structural analysis and hands-on practice on software is included in this subject. After learning this subject, diploma students will develop in-depth understanding in the field of structural engineering and will be able to apply their knowledge and analytical skills in the construction industry.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Analyze complex structural engineering problems manually and with the help of software and interpret results.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with the identified competency are to be developed in the student for the achievement of the following COs:

- a) Identify determinate & indeterminate structures and compute degree of indeterminacy.
- b) Analyse a symmetrically loaded fixed beam with moment area method and draw SF & BM diagrams.
- c) Analyse a symmetrically loaded continuous beam and portal frame(without any lateral sway) with Moment Distribution Method and draw SF & BM diagrams.
- d) Analyse column , dam and retaining wall subjected to eccentric axial loading to draw stress distribution diagram and check for no tension condition

e) Analyse beam, plane truss and plane frame on structural analysis software and interpret output results.

Teaching Scheme			Total Credits	Examination Scheme					
(In Hours)			(L+T+P/2)	Theory Marks		Practical Marks		Total	
L	Т	Р	С	СА	ESE	СА	ESE	Marks	
3	0	2	4	30*	70	25	25	150	

4. TEACHING AND EXAMINATION SCHEME

(*):Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the subcomponents of the COs. Some of the **PrOs** marked **'*'** are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
1	Determine static and kinematic indeterminacy of Beams, Plane Truss, Plane Frame (At Least two problems each)	I	02*
2	Solve at least 4 problems each of load cases &/or combinations for fixed beams, using moment area method, draw SF & BM diagrams and locate Point of contraflexure.	Π	04*
3	Analyse continuous beam, at least 3 problems each for various cases of end conditions and symmetrical loads and its combinations to draw SF & BM diagrams , using Moment Distribution Method.	=	04*
4	Analyse a portal frame at least 1 problem each for various cases of end conditions and loads (No sway condition) and its combinations to draw SF & BM diagrams, using Moment Distribution Method.	Ш	02*
5	Analyse at least 2 problems for the column section subjected to eccentric loading and draw stress distribution diagram.	IV	02*
6	Analyse Dam and Retaining wall for given loading and draw pressure diagram at base and check the stability.	IV	04*
7	Analyse strained structural material with analytical and graphical (Mohr's circle) methods for all cases.	V	04*
8	Analyse Beam, Plane Truss and Plane frame on structural engineering software (freeware/paid) and interpret its output results.	VI	06*
	Total hours		28 Hrs.

<u>Note</u>

- *i.* More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- **ii.** The following are some **sample** 'Process' and 'Product' related skills(more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

Sr. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Understand the problem properly.	20
2	Adopted proper methodology to solve the problem.	20
3	Report writing .	20
4	Answer to questions.	20
5	Timely submission.	20
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practicals in all institutions across the state.

Sr. No.	Equipment Name with Broad Specifications	PrO. No.
1	Computer Systems.	06
2	Freeware/Paid Structural analysis software.	06

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs and PrOs. More could be added to fulfill the development of this competency.

- a) Work as a leader/a team member.
- b) Follow safety practices while using equipment.
- c) Realize importance of green energy. (Environment related)

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

The major underpinning theory is given below based on the higher level UOs of *Revised Bloom's taxonomy* that are formulated for development of the COs and competency. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at different levels)	
Unit – I Fundamentals	 1a. Identify types of skeletal structures and continuum structures. 1b. Differentiate determinate and indeterminate structures. 1c. Differentiate stable and unstable structures. 1d. Determine static and kinematic indeterminacy of Beam, Plane Truss and Plane Frame. 	 1.1 Definition of skeletal structures, types of skeletal structures- Beam, Plane Truss, Plane frame, Grid, Space Truss, Space Frame. 1.2 Definition of continuum structures, types of continuum structures- Plate, Shell, Dams, Retaining Wall, Machine Parts etc. 1.3 Determinate and indeterminate structures. 1.4 Advantages and disadvantages of indeterminate structures. 1.5 Stability of structures- External stability and internal stability. 1.6 Static indeterminacy (External/Internal) of Beam, Plane Truss and Plane Frame only. 1.7 Kinematic indeterminacy of Beam, Plane Truss and Plane Frame only.
Unit – II Fixed Beams	 2a. Differentiate between fixed beam and simply supported beam. 2b. Analyse a symmetrically loaded fixed beam with uniform flexural rigidity(EI) using the Moment area method. 2c. Draw SF and BM diagrams. 2d. Locate the point of Contra flexure. 	 2.1 Define a Fixed beam, Advantages of fixed beam over simply supported beam. 2.2 Concept of analysis by Moment area method 2.3 μ and μ' diagram for possible symmetric loading on a fixed beam of span L 2.4 Numericals on calculating SF & BM and drawing SF & BM diagrams for fixed beam with symmetric loading (UDL & Point load only) 2.5 Locate Point of contra flexure.
Unit– III Moment Distribution Method	 3a. Use fundamentals of Moment Distribution Method in structural analysis problems. 3b. Analyse a symmetrically loaded multi span continuous beam with Moment Distribution Method 3c. Analyse a symmetrical portal 	 3.1 Define the terms : Stiffness, flexibility, carry over factor, distribution factor, procedure of moment distribution method 3.2 Numerical to analyse two or three span continuous beams having end supports as overhang, fixed and /or hinge and subjected to symmetrical loading (UDL &

	frame (No sway condition) with Moment Distribution Method 3d.Draw SF and BM diagrams, for beams/portals for given load cases and combinations (UDL, point loads only)	 Point load only) and draw S.F & B.M Diagram 3.3 Numerical to analyse symmetrical Portal frame (without any lateral sway) having hinged or fixed end supports and subjected to symmetrical vertical loading (UDL & Point load only) and draw S.F & B.M Diagram
Unit– IV Direct and Bending Stresses	 4a. Analyse Column section for combined direct and bending stresses. 4b. Determine the limit of eccentricity and locate the core of a given section. 4c. Check stability of retaining wall and dam. 4d. Draw stress distribution diagram in column, retaining wall and dam under given types of loads. 	 4.1 Introduction to axial and eccentric loads on column section. Formulae for combined stresses on sections subjected to eccentric loads considering uniaxial and biaxial eccentricity and stress distribution diagrams. 4.2 Condition for no tension or zero stress at extreme fiber, limit of eccentricity, core of section for rectangular and circular (solid and hollow) cross sections. 4.3 Application of concept of combined stresses to find pressure at base and stability check of rectangular and trapezoidal retaining wall and dam with conditions of stability. 4.4 Numericals based on above topics topics to find combined stresses.
Unit– V Principal planes and	5a. Analyse strained structural material for calculation of normal, tangential and resultant stress on a given inclined plane.	5.1 Normal, Tangential & Resultant stresses due to direct orthogonal and shear stresses on a given inclined plane (Only formulae no derivation). Numericals based on this.
Principal stresses	 5b. Locate the principal plane in a strained structural material. 5c. Compute principal stresses . 5d. Use Mohr's circle method to analyse strained structural material. 	 5.2 Definition of principal plane and stress. 5.3 Location of principal planes and calculation of principal stresses (Only formulae no derivation) Maximum tangential stress. Numericals based on this.
		5.4 Mohr's circle and its application for determination of Normal, Tangential & Resultant stresses due to direct orthogonal and shear stresses on inclined plane.
		5.5 Mohr's circle and its application for location of principal planes and determination of principal stresses
		5.6 Mohr's circle and its application for determination of maximum tangential stress.

	6a. Differentiate between static	6.1 Difference between static and dynamic	
Unit– VI	& dynamic structural analysis.	analysis, its importance and usefulness.	
	6b. Select suitable structural	List of static and dynamic loads.	
Introduction to	analysis software.	(Without Numericals).	
computer aided	6c. Prepare input data for static	6.2 Brief introduction of matrix methods fo	r
structural	analysis of beam, plane truss	structural analysis - Stiffness method ar	nd
analysis	and plane frame.	Flexibility method for analysis of skeleta	al
anarysis	6d. Interpret output result of	structure and suitability of stiffness	
	analysis.	method for computer programming	
		(Without Numericals).	
		6.3 Overview of popular structural analysis	
		softwares (Freeware and/or paid). Stud	у
		of Preprocessor and Postprocessor of	
		software.	
		6.4 Preparation of input data for static	
		analysis of beam, plane truss and plane	
		frame - Geometry, Supports, Loads and	
		Material properties.	
		6.5 Interpret output results in the form of -	
		text / diagram /animation for Axial	
		forces, S.F., B.M. and Deflection.	
		6.6 Study of Stress Contour for continuum	
		structure (Plate/Shell)- (No Analysis)	

9. SUGGESTED SPECIFICATI	ON TABLE FOR QUESTION PAPER DESIGN
--------------------------	------------------------------------

Unit	Unit Title	Teaching	Distri	Distribution of Theory Marks		
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
I	Fundamentals	05	02	02	04	08
II	Fixed Beams	08	04	04	06	14
	Moment Distribution Method	10	04	04	08	16
IV	Direct and Bending Stresses	07	02	04	06	12
V	Principal planes and Principal stresses	07	02	02	06	12
VI	Introduction to computer aided structural analysis	05	02	02	04	08
	Total	42	16	18	36	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may slightly vary from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Collect photographs of determinate & indeterminate structures from nearby locations.
- b) Identify different situations with photographs of structural members where combined direct and bending stresses occur in the field.
- c) Identify different situations with photographs of nearby retaining structures.
- d) Identify situations where in a plane is subjected to complex stresses.
- e) List out various softwares available and submit a review report.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No. 4* means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.10*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on environment and sustainability.
- g) Guide students for using data manuals.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semester, the micro-projects are group-based (group of 3 to 5). However, **in the fifth and sixth semesters**, the number of students in the group should **not exceed three**.

The micro-project could be field application based, internet-based, workshop-based, laboratory-based or theory based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain a dated work diary consisting of individual contributions in the project work and give a seminar presentation of it before submission. The duration of the micro-project should be about **14-16** *(fourteen to sixteen) student engagement hours* during the course. The students ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Analyse and compare B.M. and S.F. values at Supports and Mid span for simply supported beam and fixed beam having same span and loading conditions for three different cases.
- b) Prepare a spreadsheet computer program or to analyse fixed beams by moment area method.
- c) From a real life problem, calculate loads on a continuous beam (from slab, wall etc) and analyse the beam with a Moment Distribution Method or with structural engineering software.
- d) Prepare spreadsheet or computer program to determine combined direct and bending stresses for an eccentric loaded column for given data.
- e) Prepare spreadsheet or computer program to determine pressure at base for dam or retaining wall and check the stability for given data.
- f) Prepare spreadsheet or computer program to analyse strained structural material and compare answer by graphical method (Mohr's Circle) with AutoCAD
- g) Analyse a small building with structural engineering software.

15.	SUGGESTED LEARNING RESOURCES						
Sr. No.	Title of Book	Author	Publication with place, year and ISBN				
1	Theory of	Dr. B.C.Punamia	Laxmi Publications Pvt. Ltd.				
	Structures(SMTS-II)	Ashokkumar Jain	NewDelhi				
		Arunkumar Jain	ISBN: 81-700-861-83				
2	A Textbook of Strength	R.S.Khurmi	S Chand Publishing, Delhi (2019)				
	of Materials (Mechanics	N. Khurmi	ISBN: 9789352833979				
	of Solids)						
3	Structural Analysis-I	S.S.Bhavikatti	Vikas Publishing House, New Delhi				
			ISBN: 81-947-519-85				
4	Matrix Analysis of	William	CBS Publisher and Distributor Pvt.				
	Framed Structures	Weaver, Jr.,	Ltd.				
		James M. Gere	ISBN : 978-8123911519				
5	Matrix methods of	S.S. Bhavikatti	I.K. International Publishing House,				
	Structural Analysis		Delhi,				
			ISBN : 978-9381141359				

13. SUGGESTED LEARNING RESOURCES

14. SOFTWARE/LEARNING WEBSITES

- a) NPTEL Course :- Matrix method of Structural Analysis by IIT, Kharagpur https://archive.nptel.ac.in/courses/105/105/105105180/
- b) Free Structural Analysis Softwares : <u>https://www.dlubal.com/en/education/students-and-schools/free-structural-analysis-software-for-schools</u> <u>https://skyciv.com/design/free-design-software/</u>

15. PO-COMPETENCY-CO MAPPING

Semester V	Advance Analysis of Structures (Course Code: 4340602)							
	Pos							
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge		PO 3 Design/ development of solutions	PO 4 Engineering Tools, Experimentation &Testing	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Management	PO 7 Life-long learning	
<u>Competency</u>	Analyse con interpret re		ictural engineer	ring problems man	ually and with t	the help of softw	ware and	
Course Outcomes COa)Identify determinate & indeterminate structures and compute degree of indeterminacy	3	2	-	-	-	-	2	
COb) Analyse a symmetrically loaded fixed beam with moment area method and draw SF & BM diagrams.	2	3	-	-	2	2	2	
COc) Analyse a symmetrically loaded continuous beam and portal frame(without any lateral sway) Moment Distribution Method and draw SF & BM diagrams	2	3	-	-	2	2	2	
COd) Analyse column , dam and retaining wall subjected to eccentric axial loading to draw stress distribution diagram and check for no tension condition.	2	3	_	-	2	2	2	

COe)Analyse beam, plane truss and plane frame on structural analysis software and interpret output results	2	3	-	3	2	2	2	
--	---	---	---	---	---	---	---	--

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE GTU Resource Persons

Sr. No.	Name and Designation	Institute	Contact No.	Email
1.	Shri P .V. Rayjada, HOD Applied Mechanics	L.E. College (Diploma), Morbi	9824281646	<u>satwikpr@gmail.com</u>
2.	Shri J. H. Gabra, HOD Applied Mechanics	Dr. S.& S.S. Gandhy college of engineering and Technology ,Surat	9427207933	gabrajh@rocketmail.com
3.	Shri S.M.Kondhiya, Sr. Lecturer Applied Mechanics	G.P. Rajkot	9825764005	sharadkondhiya@gmail.com
4.	Shri R.R. Makwana, Sr. Lecturer Applied Mechanics	L.E. College (Diploma), Morbi	9824128087	rrm.applied@gmail.com

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU) Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021)

VI – Semester

Course Title: Design of Structures

(Course Code: 4360601)

Diploma programme in which this course is offered	Semester in which offered
Civil Engineering	Sixth Semester

1. RATIONALE

After learning Mechanics of rigid bodies in 2nd semester and Mechanics of deformable bodies in 3rd semester, this subject "Design of Structures" introduced in 6th semester, as it deals with the design and analysis of R.C.C. and Steel structures, is the backbone of Civil Engineering Course. The design of prime members like Slabs, Beams, Columns and Footing in R.C.C. and In Steel structures some Introductory topics like design of connections and calculations of various loads on Roof Truss are intended to incorporate in this subject of design of structures.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Analyze and Design important structural members of R.C.C. and primary knowledge of bolted and welded connections for Steel structures and various loads for steel structures.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with the identified competency are to be developed in the student for the achievement of the following COs:

- a. Analyze and Design singly reinforced rectangular beam for flexure and shear.
- b. Design One way and Two way slabs for simply supported conditions.
- c. Design axially loaded short column and pad footing.
- d. Design Bolted and Welded Connections for steel structures.
- e. Determine Dead Load, Live Load and Wind Load on Roof Truss

Teaching Scheme		Total Credits		Exa	amination S	Scheme		
(In Hours)		(L+T+P/2)	Theory Marks Practical Mar		Marks	Total		
L	Т	Р	С	СА	ESE	СА	ESE	Marks
3	0	4	5	30*	70	25	25	150

4. TEACHING AND EXAMINATION SCHEME

(*):Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

Note: Subject related Indian Standard Codes (1) IS:456-2000 (2) IS:800-2007 (3) IS: 875 (Part- I,II,III) (4) SP-16 Design Aid to IS-456 (5) SP-6 Handbook for Steel Structures will be allowed during Examinations.

5. SUGGESTED ASSIGNMENTS/ EXERCISES :

The following practical outcomes (PrOs) are the subcomponents of the COs. Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. Required
1	Interpret IS Code provisions for Limit state R.C.C. Design from IS:456-2000 and SP-16	I	02 *
2	Analyse Singly Reinforced Beams for Moment of Resistance from given data (2-Problems).	II	04*
3	Design of singly reinforced beams for flexure and shear and apply necessary checks from given data (1-Problem).	,	04 *
4	Design of One way simply supported slabs and apply necessary checks from given data (1-Problem).	IV	04*
5	Draw sketches (not to scale) showing reinforcement details of singly and doubly reinforced beams and one way simply supported slab in longitudinal and cross sectional view.	II,III,IV	02*
6	Draw structural details of the designed beam , simply support a one way slab in A2 size drawing sheet with scale. (Sheet-1)	11,111,1V	04*
7	Design of Two way simply supported slabs and apply necessary checks from given data. (Corners not held down condition only)-(1-Problem)	IV	04*
8	Analyse and design axially loaded short square column and design pad footing of same column from given data.	V	06*
9	Draw sketches (not to scale) showing reinforcement details of axially loaded short rectangular, Circular columns and isolated pad and slope footing in plan and sectional view in longitudinal and cross sectional view.	IV,V	02*
10	Draw structural details of the designed two way slab, column and footing in A2 size drawing sheet with scale. (Sheet-2)	IV,V	04*
11	Interpret IS Code provisions for Limit state Steel Design from IS:800-2007 and SP-6	VI	02 *
12	Draw sketches (not to scale) showing details for standard rolled steel sections, built up sections, Beam to Beam and Beam to Column connections (Bolted and Welded).	VI,VII	02*
13	Design a bolted connection for the given data of steel section as per IS: 800-2007.	VII	04*

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. Required
14	Design a welded connection for the given data of steel section as per IS: 800-2007.	VII	04*
15	Interpret IS provision for dead load, live load and wind load for steel roof truss from IS 875 (Part- I to III)	VIII	02*
16	Draw sketches (not to scale) for types of roof trusses, components of roof truss and important four joints like ridge joint, eave joint, bottom middle joint and intermediate joint.	VIII	02*
17	Calculate dead load, live load and wind load for the given data of steel roof truss with graphical method (sheet-3) and prepare a force table.	VIII	04*
	Total hours		56 Hrs.

<u>Note</u>

- *i.* More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- *ii. The following are some sample 'Process' and 'Product' related skills(more may be added/deleted depending on the course) that occur in the above listed Practical Exercises of this course required which are embedded in the COs and ultimately the competency.*

Sr. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Interpretation of given data and its understanding.	10
2	Selection of sketches/Process of designing of the given	30
	structural components using relevant I.S.codes and	
	preparing of report of site visit	
3	Presentation of sketches in sketchbook, neatness and	30
	cleanliness of sheets and writing reports.	
4	Individual work, work as a team-member	10
5	Completion and submission of work in time.	20
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practicals in all institutions across the state.

Sr. No.	Drawing tools and other design aids (for all PrOs)
1	Drawing boards and drawing instruments.
2	Scientific calculator and all relevant IS codes.
3	Computers and Printers.
4	Available CAD software(Not mandatory)

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs and PrOs. More could be added to fulfill the development of this competency.

- a) Work as a leader/a team member.
- b) Follow safety practices while using equipment.
- c) Realize the importance of green energy. (Environment related)

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

The major underpinning theory is given below based on the higher level UOs of *Revised Bloom's taxonomy* that are formulated for development of the COs and competency. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at different levels)	
Unit – I Fundamentals of R.C.C. Design	 1a. Identify components and their characteristics for RCC structures. 1b. Use limit states conditions for analysis and design of RCC structures. 1c. Use IS Code provisions for General Design Consideration. 	 1.1 Reinforced Cement Concrete, necessity of steel in concrete, normal location of steel in beams, slabs, column & footing. 1.2 Limit State, Limit State of Collapse-Flexure, Shear, Compression, Torsion, Limit State of Serviceability-deflection and Cracking. 1.3 Characteristic Strength of concrete and steel, partial safety factor of concrete and steel and partial safety factors for loads. 1.4 Nominal Cover, Effective depth, Effective span.
Unit – II Singly Reinforced Beam	 2a. Differentiate types of RC beams. 2b. Calculate moment of resistance for given type of section. 2c. Design a singly RC beam section for given condition. 2d. Apply check for deflection 2e. Draw reinforcement detailing for the designed beam section as per IS provision. 	 2.1. Types of beam: Singly reinforced beam, Doubly reinforced beam, T-beam, L-beam. Difference among various beams. 2.2. Stress-strain diagram for singly RC section. Under reinforced, over reinforced and balanced section. 2.3. Analysis of Singly RC beam: Determination of lever arm, total tension, total compression, percentage area of reinforcement and Moment of resistance. Numerical based on this.

Unit– III Shear and Development Length Unit– IV Slabs	 3a. Identify the pattern of shear failure in beams and slabs. 3b. Design shear reinforcement in beams as per given Conditions. 3c. Calculate development length as per given conditions. 3d. Check for development length in R.C.C. Design 4a. Suggest types of slab for given support conditions. 4b. Design one way and two way simply supported slabs as per given data 	 2.4. Design and detailing of Singly RC beam: Determination size of section, area and number of reinforcement bars. Combination of different diameters of reinforcement bars. Check for spacing and cover. Numerical based on this with checking design for deflection. 3.1 Shear: Definition of shear, IS code specifications, single legged and two legged shear reinforcement. 3.2 Vertical stirrups, Incline stirrups, benefit of bent up of main tension reinforcement. Spacing of stirrups. Numerical based on this. 3.3 Effect of shear in slabs. IS code provision. 3.4 Development Length: Definition of development length, IS provision for determination of development length for tension and compression zone. Numerical based on this. 4.1 Slab: Types of slabs. One way simply supported slab. Two way slab and one way continuous slab. 4.2 IS provision for main reinforcement, distribution rainforcement, minimum
	given data.	distribution reinforcement, minimum and maximum steel area, effective span,
	4c. Examine suitability of designed slab by applying	effective depth, effective cover.
	deflection and cracking criteria.4d.Draw reinforcement detailing for the designed slab as per IS	4.3 Depth of Slab from deflection criteria, Dead Load, Live Load and Floor finish load on Slab. Bending moment due to loads
	for the designed slab as per IS provision.	 4.4 Design and detailing of one way simply supported and cantilever slabs. Check limit state of serviceability. Numerical based on this.
		4.5 Design and detailing of two way simply supported slab (only corners not held down condition). Check the limit state of serviceability. Numerical based on this.
Unit– V	5a. Identify the type of column	5.1 Column: Types of column, Long
Axially loaded	based on load condition.	Column, Short column, Axially loaded
short column and	5b. Analyze and Design axially loaded short columns.	column, uniaxially loaded column and biaxially loaded column.
pad footing.	5c Design Isolated Pad Footing	5.2 Limit state of collapse: Compression,
	for column.	assumptions, effective length,
	5d. Draw reinforcement details of	slenderness ratio, minimum eccentricity.
	column and footing.	IS provision for reinforcement in

Unit– VI Fundamental of Steel Design	 6a. Identify relevant steel structure from given condition. 6b. Identify the components of the given steel structure. 	 column, lateral reinforcement as tie only for column, 5.3 Load analysis of axially loaded short columns. 5.4 Design of axially loaded short columns. Check for minimum eccentricity. 5.5 Footing: Types of isolated footing, pad and sloped footing. IS specification for reinforcement in pad footing only. 5.6 Design of isolated pad footing. Check for bending, one way shear and two way shear, check for development length in footing. Numerical based on this with reinforcement details. 6.1 Steel versus RCC as a building material. Advantages and disadvantages of steel. Types of steel sections normally in use. 6.2 Characteristic strength and design strength, Stress-strain curve for mild
	6c. Choose properties of the given steel section.	steel. Partial safety factors for load and materials as per IS provision.6.3 Limit state of strength and serviceability.
Unit– VII Bolted and Welded connections	 7a. Select type of connection for the given steel structure. 7b. Compute the strength of bolted and welded connection for the given condition. 7c. Design bolted and welded connection for given condition. 	 7.1 Types of connections in steel structures Bolted connection: Types of bolts, Black Bolts, Turned Bolts, HSFG Bolts, Grade of Bolts Lap and Butt Joint, Minimum and Maximum Pitch, Tack Bolting, Edge Distance, Gauge Distance, Bolt Hole. 7.2 Shear Capacity of Bolt – Vdsb, Bearing Capacity of Bolt – Vdpb as per IS-800-2007, Bolt Value, Efficiency of Joint. 7.3 Analysis and design of bolted connection of plate and Angle sections. Numericals based on this. 7.4 Welded connection: Types of weld, Fillet Weld and its symbol, tack welding, minimum and maximum size of weld, effective throat thickness, end returns. 7.5 Analysis and design of Fillet weld in plate and angle section as per IS-800- 2007. Numericals based on this.
Unit– VIII Load Calculation for Roof Truss	8a. Identify the type of steel roof truss.8b. Compute dead load, live load	8.1 Types of Truss for various spans, Pitch of Truss, Rise, Spacing of Truss, Members of Truss: Purlin, Principal
	and wind load per panel point	Rafter, Main Tie, Sag Tie. Joints: eave

as per given condition.	joint, ridge joint, intermediate joint and
8c. Derive design load and check	middle bottom joint. Roofing material-
load from different load	GI and AC Sheets.
combinations.	8.2 Types of load and load combinations for
	roof truss as per IS 875 codal provisions.
	8.3 Dead Load of Truss per panel point: self weight ,weight of Purlin , Wind Bracing , and weight of Roofing Material .
	8.4 Live Load per panel point on purlin and Truss.
	8.5 Wind Load per panel point on roof truss
	8.6 Numericals on dead load, live and wind load for roof truss.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distri	bution o	f Theory	Marks
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
	Fundamentals of R.C.C. Design	02	00	02	02	04
II	Singly Reinforced Beam	08	02	04	06	12
	Shear and Development Length	04	02	02	04	08
IV	Slabs	08	02	04	06	12
V	Axially loaded short column and pad footing.	06	02	04	04	10
VI	Fundamentals of Steel Design	02	00	02	02	04
VII	Bolted and Welded connections	06	02	02	06	10
VIII	Load Calculation for Roof Truss	06	02	02	06	10
	Total 42 12 24 34 70					

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist students for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may slightly vary from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the conventional teaching and learning, following are the suggested studentrelated **co-curricular** activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Collect different photographs of nearby structures (RCC or Steel) showing different components clearly to create a self site visit.
- b) Collect the photographs of different types of footings/foundations being constructed nearby with their primary details.
- c) Collect different photographs of steel structural members (by visiting railway station, warehouse or industrial sheds) where connections can be shown actually implemented at site.
- d) Collect the photographs of five different types of rolled steel sections.
- e) Collect the information with photographs of structural failure of RCC components due to any reason.
- f) Collect the information with photographs of world famous steel structures from journals or websites.
- g) Collect the information with photographs of structural members having well known structures of India.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/subtopics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No. 4* means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.10*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on environment and sustainability.
- g) Guide students for using data manuals.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-projects are group-based (group of 3 to 5). However, **in the fifth and sixth semesters**, the number of students in the group should **not exceed three**.

The micro-project could be field application based, internet-based, workshop-based, laboratory-based or theory (analysis or design) based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain a dated work diary consisting of individual contributions in the project work and give a seminar presentation of it before submission. The duration of the micro-project should be about **14-16** *(fourteen to sixteen) student engagement hours* during the course. The students ought to submit micro-project by the end of the semester to develop the industry-oriented COs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Determine the moment of resistance of different cross sections for beams having the same area and different grades of concrete.
- b) Compare the price of different grades of steel bars by actual market survey and prepare the report.
- c) Prepare spreadsheet or computer program to determine moment of resistance of singly reinforced beam for three grades of steel and concrete.
- d) Prepare spreadsheet or computer program to determine development length for different grades of steel , concrete, dia. of bar in tension and compression.
- e) Prepare spreadsheet or computer program to calculate load carrying capacity of axially loaded short RC column.
- f) Prepare drawing in Autocad for Dead load, Live load and Wind Load for given roof truss and compare answers with manual drawing.
- g) Carry out market survey for steel sections which are available in market but not included in steel table or SP:6.

Title of Book	Author	Publication with place, year and ISBN
Design of Reinforced	N Krishna Raju	CBS Publishers & Distribution Pvt.
Concrete Structures		Ltd. NewDelhi
		ISBN: 9789385915369
Design of Reinforced	N Subramanian	Oxford Publisher
Concrete Structures		ISBN: 0198086946
Reinforced Concrete Vol.I	Dr.H.J.Shah	Charotar Publication
		ISBN: 9789385039478
Design of Steel Structures	S.S.Bhavikatti	Dreamtech press New Delhi
By Limit State Method as per IS:800-2007		ISBN:9389307058
Limit State design of Steel	S.K.Duggal	Mc Graw Hill
structures		ISBN: 9353164877
Limit State design of Steel	S.Kanthimathinath	Dreamtech press
	an	New Delhi
2007		ISBN:9389447577
IS:456-2000- Plain and	BIS, New Delhi	BIS, New Delhi
Reinforced concrete code of		
-		
	BIS, New Delhi	BIS, New Delhi
	Design of Reinforced Concrete Structures Design of Reinforced Concrete Structures Reinforced Concrete Vol.I Design of Steel Structures By Limit State Method as per IS:800-2007 Limit State design of Steel structures Limit State design of Steel structures As per IS:800- 2007 IS:456-2000- Plain and	Design of Reinforced Concrete StructuresN Krishna RajuDesign of Reinforced Concrete StructuresN SubramanianConcrete StructuresDr.H.J.ShahReinforced Concrete Vol.IDr.H.J.ShahDesign of Steel Structures By Limit State Method as per IS:800-2007S.S.BhavikattiLimit State design of Steel structuresS.K.DuggalLimit State design of Steel structures As per IS:800- 2007S.Kanthimathinath anIS:456-2000- Plain and Reinforced concrete code of practice.BIS, New DelhiIS:800-2007-Indian Standard Code of practice for use of structural steel inBIS, New Delhi

13. SUGGESTED LEARNING RESOURCES

Sr. No.	Title of Book	Author	Publication with place, year and ISBN
	construction.		
9	IS: 875 part 1 to 5, Indian Standard Code for Loading Standards	BIS, New Delhi	BIS, New Delhi
10	SP:16-Design Aids for reinforced concrete to IS:456	BIS, New Delhi	BIS, New Delhi
11	SP:6-Handbook for Structural Engineers(Structural Steel Sections)	BIS, New Delhi	BIS, New Delhi
12	SP:34-Handbook on Concrete Reinforcement and Detailing	BIS, New Delhi	BIS, New Delhi

14. SOFTWARE/LEARNING WEBSITES

- a) NPTEL Course :-Reinforced Cement Concrete by IIT, Kharagpur https://archive.nptel.ac.in/courses/105/105/105105105/
- b) NPTEL Video series for Steel design by IIT, Kharagpur https://archive.nptel.ac.in/courses/105/105/105105162/

15. PO-COMPETENCY-CO MAPPING

Semester III	Design of Structures (Course Code: 4360601) POs						
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge		development	PO 4 Engineering Tools, Experimentation & Testing	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Management	PO 7 Life-long learning
<u>Competency</u>	-	0	1	ral members of R.C s and various loads t		0	olted and
Course Outcomes COa) Analyze and Design singly reinforced rectangular beam for flexure and shear.	3	3	3	2	3	2	2
COb) Design One way and Two way slabs for	2	3	3	2	2	2	2

simply supported conditions.							
COc)Design axially loaded short column and pad footing.	2	3	3	2	2	2	2
COd) Design Bolted and Welded Connections for steel structures.	2	3	3	3	2	2	2
COe)Determine Dead Load, Live Load and Wind Load on Roof Truss.	2	3	3	3	2	2	2

Legend: '**3'** for high, '**2**' for medium, '**1'** for low and '-' for no correlation of each CO with PO.

Sr. No.	Name and Designation	Institute	Contact No.	Email
1.	Shri P.V. Rayjada, HOD Applied Mechanics	L.E. College (Diploma), Morbi	9824281646	<u>satwikpr@gmail.com</u>
2.	Dr. J.B.Oza, I/C HOD Applied Mechanics	G.P.Rajkot	9429048253	jiteshboza@gmail.com
3.	Shri S.M.Kondhiya, Sr. Lecturer Applied Mechanics	G.P. Rajkot	9825764005	sharadkondhiya@gmail.com
4.	Shri R.R. Makwana, Sr. Lecturer Applied Mechanics	L.E. College (Diploma), Morbi	9824128087	rrm.applied@gmail.com

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE <u>GTU Resource Persons</u>

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-VI

Course Title: Water Supply & Sanitary Engineering

(Course Code: 4360602)

Diploma program in which this course is offered	Semester in which offered
Civil Engineering	6 th Semester

1. RATIONALE

Water is very important element in civilization. Social life developed on the bank of Water-source. If society wants to make remarkable growth, the mental as well as social health play vital role. For that purpose, Pure, potable and palatable water to be supplied to the society and to maintain the hygiene of it, the used water must be collected and disposed of in nature by giving proper treatment, so the natural flora and fauna will not get affected by sewage disposal. In present time, solid waste also wants more attention. The technician must know about the quality as well as quality of domestic water to be supplied to the society. Similarly, technician should be conversant with the collection, conveyance, treatment and disposal of waste water.

2. COMPETENCY

The course content should be taught and the curriculum should be implemented with the aim to develop different types of skills so that students are able to acquire following competency:

- 1. Selection of suitable treatment to raw water based on its quality useful for domestic purpose.
- 2. Maintain the efficiency of pipe-network for water supply and Sewage disposal effectively.

3. COURSE OUTCOMES (COs)

The theory should be taught and practical should be carried out in such a manner that students are able to acquire different learning out comes to demonstrate following course outcomes.

- 1. Understanding of importance of Water Supply and sanitary Engineering.
- 2. Calculate and Estimate the impurities present in water used for Domestic as well as construction works.
- 3. Laying and maintenance of water distribution system and sewer-networks.
- 4. Decide the requirement of treatment to make water potable and the treatment require for sewage to safely dispose off.
- 5. Effective implementation of house plumbing work.

4. TEACHING AND EXAMINATION SCHEME

	Teaching Scheme (In Hours)		Total Credits (L+T/2+P/2)	Examina		amination	Scheme	
		-		Theory Marks		heory Marks Practical Marks		Total
L	т	Р	С	СА	ESE	СА	ESE	Marks
3	-	2	5	30*	70	25	25	150

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate the integration of Cos, and the remaining 20 marks are the average of 2 tests to be taken during the semester for assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit, CA - Continuous Assessment; ESE -End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the sub-components of the Cos. Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

No	Exercise	Hours
1.	Examples of prediction of future population by various methods. Examples of calculation of hardness of water for a given samples <u>.</u>	Home Assignment

2.	Sketches	Ноте
	1 Layout of Water treatment plant	Assignment
	2 Layout of Sewage treatment plant	
	3 Pipe Joints	
	4 Distribution System	
	5 Pipe fittings & sanitary fittings.	
	6 Activated sludge process	
	7 Trickling Filter	
	8 House Drainage Plan	
3.	Design:	02
	Design of septic tank (Student will be given data, I.S. 2470(II) and handouts on septic tank, and should be asked to design the septic tank.)	
4.	Laboratory Experiments	10
	1. Determine pH value of given water sample.	
	2. Determine turbidity of given water sample.	
	3. Determine Residual chlorine from given sample of	
	water	
	4. Determine B.O.D. of wastewater sample. 5. Determine	
	C.O.D. of wastewater sample.	
5.	Visits	08
5.	Visits 1. Water Treatment Plant	08
5.		08
5.	1. Water Treatment Plant	08

6.	Seminar	08
	The topic for the seminar should be given to the group of three to five students and they shall be asked to defend the seminar in presence of teacher and other students. Detailed report of seminar should be submitted at the end.	

<u>Note</u>

- *i.* More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry-relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- *ii. The following are some* **sample** 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above-listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

S. No.	Sample Performance Indicators for the PrOs.	Weightage in %
1	Initiative of students in collecting data and computation	20
2	Use of appropriate methods while work in team/group	20
3	Comprehension and presentation skills in drawing	20
4	Follow up standard steps for design calculations	20
5	Presentation of seminar and Timely submission	20
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practice in all institutions across the state.

S.		PrO. No.
No.	Equipment Name with Broad Specifications	
1	1. 2. Spectrophotometer	4
	 Water Analysis Kit B.O.D. Incubator 	
	Reflux apparatus	
	Various model of Fitting and Fixtures	

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the abovementioned COs and PrOs. More could be added to fulfil the development of this competency.

- a) Work as a leader/a team member.
- b) Follow ethical practices.
- c) Practice environmentally friendly methods and processes. (Environment related)

The ADOs are best developed through the laboratory/field-based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

i. 'Valuing Level' in 1st year ii. 'Organization

Level' in 2nd year.

iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

Only the major Underpinning Theory is formulated as higher level UOs of *Revised Bloom's taxonomy* in order for the development of the COs and competency is not missed out by the students and teachers. If required, more such higher-level UOs could be included by the course teacher to focus on the attainment of COs and competency.

Unit	Major Learning Outcomes (Course Outcomes in Cognitive Domain according to NBA terminology)	Topics and Sub-topics
Unit-I Introduction	1.a Discuss Importance of Water supply engineering	1.1 Importance and necessity of water supply Engineering
	1.b Identify sources of water for	1.2 Sources of water
	potable use	1.3 Suitability of water
		1.4 Choice of source

Unit-II Quantity and Quality of Water	 2.a Calculate water demand for future population 2.b Enlist factor affecting water demand 2.c Determine various impurities found in water source 	 2.1 Types of demand 2.2 Population forecast 2.3 Computation of quantity of water 2.4 Fluctuation in demand 2.5 Factors affecting demand 2.6 Impurities in water
		 2.7 Collection of water sample 2.8 Physical Chemical and Biological tests 2.9 Standards of quality of water

Unit-III Treatment of Water	 3.a Discuss objectives of water Treatment 3.b Discuss principles used in water treatment. 3.c Discuss various units used for treatment of water 	 3.1 Objects of water treatment 3.2 Location of water treatment plant 3.3 Layout of water treatment plant 3.4 Basic principles of working of treatment plant 3.5 Functioning of Coagulation treatment plant 3.6 Sedimentation 3.7 Filtration 3.8 Disinfection 3.9 Water Softening
Unit-IV Conveyance of Water	 4.a Enlist various materials used for pipe 4.b Discuss various pipe joints in Distribution system 4.c Enlist different valves and fittings used in pipe network 	 4.1 Types of pipes used for conveyance 4.2 Pipe joints 4.3 Laying of Pipes 4.4 Distribution system 4.5 Types of valves 4.6 Types of Meters 4.7 Pipe fittings and fixtures
Unit-V Maintenance of Water Supply Mains	5.a Discuss necessity of maintenance of water supply mains	 5.1 Necessity 5.2 Methods to prevent leaks 5.3 Measures for conservation of water

Unit-VI Sanitation	6.a Discuss objectives of sewage	6.1 Related terms
System	disposal	6.2 Objective of sewage disposal
		6.3 Methods of sewage collection
	sewage collection	6.4 Conservancy system
		6.5 Water carriage system

GTU - COGC-

Unit-VII	7.a Discuss sewer appurtenances	7.1 Classification of Drains			
Duraina and Courses	7.b Discuss Testing and	7.2 Sewer section			
Drains and Sewers	maintenance of sewer	7.3 Sewer joint			
		7.4 Manhole			
		7.5 Flushing tank			
		7.6 Catch basin			
		7.7 Laying of sewer			
		7.8 Appurtenances and its locations			
		7.9 Hydraulic testing of sewer pipe			
		7.10 Maintenance of sewer			
Unit-VIII	8.a Discuss Characteristics of	8.1 Characteristics of sewage			
Sewage Treatment and	sewage	8.2 Sampling of sewage			
Disposal	8.b Discuss sewage treatment process	8.3 Treatment of sewage			
	8.c Explain methods of sewage disposal	8.4 B.O.D. Test, C.O.D. test 8.5 Methods of sewage disposal			
Unit-IX	9.a Explain house plumbing system	9.1 Related terms			
House Plumbing	9.b Discuss plumbing practice and	9.2 Plumbing tools			
	safety precautions	9.3 Pipes and pipe fittings			
	9.c Enlist sanitary fittings used in	9.4 Fixing and jointing pipes			
	house plumbing	and accessories			
		9.5 Traps			
		9.6 House drainage plant			
		9.7 Plumbing practice and operations			
		9.8 Safety and precautions			
		9.9 Sanitary fittings			

Unit-X Maintenance of Sewage System	 10.a Explain procedure for maintenance of sewerage system 10.b Explain functions of maintenance equipments and tools 	 10.1 Procedure for maintenance of sewerage system 10.2 Causes of trouble and odor 10.3 Sewer cleaning operations 10.4 Requirements of maintenance 10.5 Functions of each maintenance equipments and tool 10.6 Selection of equipment for given maintenance job. 10.7 Explosives in sewers. 10.8 Safety measures for sewer-men
Unit-XI Recycling of Waste Water and Solid Waste	 11.a Discuss different methods of recycling waste water 11.b Discuss management and utilization of solid waste generated from society 	 11.1 Different method with respect to quality of waste water 11.2 Utilization and management of solid waste

Note: The UOs need to be formulated at the 'Application Level' and above of Revised Bloom's Taxonomy' to accelerate the attainment of the COs and the competency.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Uni t		Teaching	Distribution of Theory Marks					
	Unit Title	Hours	R Level	U Level	A Level	Total Marks		
ı	Introduction to Water Supply Engineering	2	1	1	0	4		
11	Quantity and Quality of Water	4	1	1	2	7		
<i>III</i>	Treatment of Water	7	1	2	4	12		
IV	Conveyance of Water	5	2	2	1	9		
v	Maintenance of Water Supply Means	2	1	1	0	4		

VI	Sanitation System	3	2	1	0	5
VII	Drains and Sewers	4	1	2	1	7
vIII	Sewage treatment and Disposal	7	2	2	3	10
іх	House Plumbing	3	1	1	1	4
x	Maintenance of Sewage System	2	1	1	0	4
хі	Recycling of Waste Water and Solid Waste	3	1	1	1	4
	Total:	42	14	15	13	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist students in their learning and to teachers to teach and question paper designers/setters to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U, and A) in the question paper may vary slightly from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- (a) Prepare a model of septic tank.
- (b) Prepare model of Water/ wastewater treatment plant.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No. 4* means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.11*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on environ and sustainability

- g) Expert lecture by practicing valuer on Valuation techniques, methods and criteria of any property.
- h) Expert lecture on latest software for Estimating and costing

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be **individually** undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should **not exceed three**.

The micro-project could be industry application based, internet-based, workshopbased, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than **16** (*sixteen*) *student engagement hours* during the course. The student ought to submit micro-project by the end of the semester to develop the industryoriented COs. A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- (a) Water quality analysis of given sample
- (b) Design of water treatment plant
- (c) sanitation survey of given building
- (d) Evaluation of present water distribution system of given area.
- (e) Evaluation of factory/industry sample with respect to dispose off in environment.
- (f) Study of water borne diseases in your area in last 20 years.
- (h) Solid waste management required for given site.

13. SUGGESTED LEARNING RESOURCES

Name of book	Author	Publisher
water supply & Sanitary Engg.	S.K.Hussain	Oxford & IBH
Elements of Public Health Engineering	K.N.Duggal	S.Chand & Co.
Water supply & Sanitary Engg.	Vazirani & Chandola	Khanna Publishers

A Text book of water supply & Sanitary Engg.	S.K.Garg	Khanna Publishers
Water supply & Sanitary Engineering	Birdie G.S.	Dhanpatrai &Sons
A Text book of water supply engineering	V.N. Gharpure	Allied Book Stall, Baroda
A Text book of sanitary engineering	V.N. Gharpure	Allied Book Stall, Baroda
Water pollution & Disposal of Waste Water on Land	U.N.Mahida	Tata McGraw Hill
Municipal and Rural Sanitation	Ehlers & Steel	Mc Graw hill book
Water and Waste water Engineering	Gorden ,Fair& Gayer Okun	John willey& Sons

14. SOFTWARE/LEARNING WEBSITES

a) www.nptel.ac.in

15. PO-COMPETENCY-CO MAPPING

Semester VI	WATER SUPPLY & SANITARY ENGINEERING (Course Code:) POs and PSOs									
Competency & Course Outcomes				PO 4 Engineering	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project	PO 7 Life-long learning	PSO 1	PSO 2	PSO 3 (If neede d)
<u>Competency</u>	Impart knowledge about irrigation structures and irrigation systems in different phases.									
CO(1) Importance of Water Supply and sanitary Engineering	3	3	-	-	1	-	-			

CO(2) Calculate and Estimate the impurities present in water used for Domestic as well as construction works.	2	3	3	3	1	-	-		
CO(3) Laying and maintenance of water distribution system and sewer-networks	3	3	3	-	1	2	1		
CO(4) Decide the requirement of treatment to make water potable and the treatment require for sewage to safely dispose off.	3	3	3	3	2	-	2		
CO(5) Effective implementation of house plumbing work.	3	3	2	-	1	1	1		

Legend: '3' for high, '2' for medium, '1' for low or '-' for the relevant correlation of each competency, CO, with PO/ PSO

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No.	Name and Designation	Institute	Contact No.	Email
1	Dr. D. H. Dalal	GPG Ahmedabad	9428858913	dhdalal@gmail.com
2	Shri A. K. Popat	RCTI, Ahmedabad	9825443501	anilkpopat@gmail.com

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-VI

COURSE TITLE: CONSTRUCTION PROJECT MANAGEMENT (COURSE CODE: 4360603)

Diploma programme in which this course is offered	Semester in which offered
Civil Engineering	six

1. RATIONALE:

The construction project has numerous necessities that include a thorough understanding of the and entire construction well as modern design/planning the process, as business managementtools/methods.Projectmanagementskillsareimportantforoverallplanning,coordination,andc ontrolofaproject from commencement to accomplishment of the project efficiently and effectively. The awareness of various project management techniques is very essential to ensure that construction projects are completed within time and budget which is a biggest challenge. To overcome this challenge, project management team has to managevarious resources with the objective to complete the constructionproject with predetermine scope, cost, time and quality, and the constraints imposed on human, materialandfinancial resources. This course is therefore designed in such a way that after learning this course the students will be able to plan, organize and control construction operations by using various management techniques and software. Thus, students would be able to complete the project in time &within the allocated budget and as per desired quality. This course is therefore very important course for diplomaholdersincivilengineeringsincetheyhavetomanageconstructionprojectsontheirown.

2. COMPETENCY:

The course content should be taught and with the aim to develop different types of managerial skills so that students are able to acquire following competencies.

- This course provides an understanding of construction management, including contracts, subcontracting, tendering and scheduling, cost control, claims, safety and quality and project closeout.
- Manage various resources and activities, effectively and efficiently using appropriate techniques and software to complete the construction project within stipulated time and allocated budget according to desired quality.

3. COURSE OUTCOMES (COs)

The theory should be taught and exercises should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

- a) Describe construction project management and roles of various construction agencies.
- b) Explain contracts and tendering process.

- c) Develop the CPM and PERT network of various construction activities.
- d) Show leadership skills required to manage various construction resources and achieve targets.
- e) Apply safety measures and legal aspects at various construction works.

Teaching Scheme		Total Credits		E	kamination S	Scheme		
(In	Hours	5)	(L+T/2+P/2)	Theory	y Marks	Practica	l Marks	Total Marks
L	Т	Р	С	CA	ESE	СА	ESE	TOLATIVIARKS
2	-	2	3	30*	70	25	25	150

4. TEACHING AND EXAMINATION SCHEME

(*):Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit, CA - Continuous Assessment; ESE -End Semester Examination.

5. SUGGESTED LIST OF EXERCISES/PRACTICAL

The following practical outcomes (PrOs) are the sub-components of the COs. Some of the PrOs marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'. Following is the list of practical exercises for guidance.

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. Required
1.	Prepare the list of roles and responsibilities of various personnel in any Private Construction organization.		2*
2.	List the reasons of project failure from a given case study.	1	2*
3.	Study given tender documents and formulate report containing terms and conditions.	2	2*
4.	Study given contract document & analysis its strengths and weaknesses and write a report on it. (Given contraction documents should be comprehensive covering all terms and conditions).	2	2*
5.	Prepare tender notice for given construction work.	2	2*
6.	Prepare a Bar Charts and prepare CPM and PERT for Project scheduling for given project data.	3	4*
7.	Carry out cost optimization for given project.	mization for given project. 3 2*	
8.	Prepare material and labor schedule for given project data.	4	2*
9.	Prepare the organization chart of any one government/public sector organization executing any major civil engineering projects.	4	2*

10.	Prepare the action plan to reduce the accident on given construction project.	5	2*
11.	Prepare the chart/ power point Presentation on various safety devices used at construction site.	5	2
12.	Study different labor laws applicable for construction project and prepare a report.	4	2*
13.	To visit nearby constructions site and to prepare a report on investment and operating cost, output of various equipment.	5	2
14.	Prepare a presentation on relevant topic and present a seminar.	1,2,3,4,5	4*
	•	Total	28

Note

1. More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/ outcomes to match the COs. The above table is only a suggestive list.

II. The following are some **sample** 'Process' and 'Product' related skills (more may be added/ deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

S. No.	Sample Performance Indicators for the PrOs	Weightage in %			
	For PrOs 1, 2,3, 4,5,6,7,8,9,10,11				
1	Collecting information	10			
2	Interpretation of data collected	10			
3	Preparing the drawing/report/chart	40			
4	Answer the question	10			
5	Submission of drawing/report/chart in time	20			
6	Attendance and punctuality	10			
	Total	100			

S. No.	Sample Performance Indicators for the PrOs	Weightage in %		
For PrOs12,13				
1	Discipline	10		
2	Involvement during site visit	20		
3	Data collection at site	20		
4	Organization of report	20		
5	Answer the question	10		
6	Timely submission of report	20		
	Total	100		

S. No.	Sample Performance Indicators for the PrOs	Weightage in %		
For PrOs 14				
1	Initiative	20		
2	Data Collection	20		
3	Content of Presentation (Use of multi media)	20		
4	Presentation (Body Language- Gesture, Posture etc.)	20		
5	Answer the question	20		
	Total	100		

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practical's in all institutions across the state.

S. No.	Equipment Name with Broad Specifications	PrO. No.

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs and PrOs. More could be added to fulfill the development of this competency.

- a) Work as a team member/ individual.
- b) Follow ethical practices.
- c) Follow safe practice on site/ lab.
- d) Practice good housekeeping.
- e) Maintain tools and equipment.

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

Only the major Underpinning Theory is formulated as higher level UOs of Revised Bloom's taxonomy in order development of the COs and competency is not missed out by the students and teachers. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UO's)	Topics and Sub-topics
UNIT-I Construction Industry and Management	 1a. Project Management 1b. Identify the roles of different agencies in the given construction industry with justification 1c. Identify the functions of specified personnel in the given organization with justification. 	 1.1 Project Definition and formulation. 1.2 Construction Project Management.: objective and Functions 1.3 Causes of Project failure. 1.4 Agencies associated with construction work-owner, promoter, builder, designer, architects. 1.5 Qualities, role and responsibilities of project manager, Role of Project Management Consultants.

UNIT-II Tendering	 2a. Explain various features of Contract document. 2b. Prepare a Tender document for the construction project 2c. Describe standard tendering process in Government. 2d. Explain various technical terms used in governmentorganization s. 	 2.1 Contract-Introduction, requirement and types. 2.2 Contract documents and conditions of contract, Contract agreement 2.3 Tender-Types, Termsand Conditions, Tendering procedure, Scrutiny, Acceptance, Rejecting. 2.4 Prepare tender notice. 2.5 Technical terms- Administrativeapproval, Technical Sanction, Issue rate, Competent Authority, Earnest money deposit (EMD) and Security deposit(SD). 2.6 Standard Bidding Process in state government.
UNIT-III Time Management Methods and Tools in Construction	 3a. Project Scheduling. 3b. Draw the bar chart for the given construction project. 3c. DrawCPM and PERT network for construction work. 3d. Describe the features of construction planning software. 	 3.1 Method of Construction Scheduling, Development of bar chart, Merits and limitations of bar chart. 3.2 Elements of Network: Event, activity, dummy activities, Precautionsin drawing Network, Numbering the events. 3.3 Workbreakdown structure, activity cost and time estimation in CPM and PERT techniques. Type of Floats and their significance. 3.4 Critical path method-Important terms, Basic Rules, Advantages and disadvantages. 3.5 Examples of CPM and PERT network. 3.6 PERT analysis-Important terms, Advantages and disadvantages. 3.7 Cost optimization. 3.8 Introduction to Project Management software.

UNIT-IV Construction Resourceman agement	 4a. Describe features of material, labor and equipment management. 4b. Prepare Job layout. 4c. Prepare material, labour and equipmentschedule. 	 4.1 Material management-Purpose, Objective, material Scheduling, material handling, Storage, safety precautions, Economy Order Quantity. 4.2 Job layout 4.3 Equipment Management : Equipment Scheduling, Factors affecting selection of equipment. 4.4 Various costs associated with equipment, Maintenance Management, Replacement of Equipment. 4.5 Manpower Management : Objectives, Labour schedule, output. 4.6 Suitable organization structure for construction industry. 4.7 Information Management : MIS – its concept and need.
UNIT-V Safety Aspect and	5a. Identify causes of accidents at construction site in the given situation with	5.1 Concept of Safety in Construction Industry, Importance of Construction Safety.
Legal aspects in	justification.	5.2 Safety Benefits to Employers,
Construction	5b. Suggest safety measures to	Employees and Customers,
Industry.	avoid accidents for the given	Construction Safety Problems,
	construction site.	Approaches to improve
	5c. Apply relevant labor law/s in the given situation of a	Construction Safety.
	construction industry.	5.3 Safety measures in construction as per IS code
	construction industry.	5.4 Workers Compensation
		5.5 Labor laws related to construction
		industry.

Note:TheUOs need to be formulated at the 'Application Level' and above of Revised Bloom's Taxonomy' to accelerate the attainment of the COs and the competency.

9. SUGGESTED SPECIFICATION TABLE WITH HOURS&MARKS(Theory)

			Distribution of Theory Marks					
Unit	Jnit Unit Title		R Level	U Level	A Level	Total Marks		
	Construction Industries and Management	03	02	03	02	07		
II	Tendering.	06	04	04	04	12		

III	Time Management Methods and Tools in Construction	08	06	07	08	21
IV	Construction Resource management	07	04	10	08	22
V	Safety Aspect and Legal aspects in Construction Industry.	04	02	04	02	08
	Total	28	18	28	24	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy)

Note: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions assess the attainment of theUOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may varyslightly from above table.

10. SUGGESTED LIST OFEXERCISES/PRACTICAL

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Give seminar on relevant topic.
- b) Undertake micro-projects.
- c) Collect organizational set up of various departments.
- d) Collect and interpret the bar charts or networks from construction sites.

e) Solve the numerical on bar chart, CPM, PERT and cost optimization.

f) Collect and interpret various store forms from PWD, WRD and MIP.

g) Download the labour laws documents from internet and write a brief summary on it.

h) Compile various safety slogans displayed at various sites with sources and write a brief summary on it.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No.* 4 means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.11*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on environ and sustainability.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project is group-based. However, in the fifth and sixth semesters, it should be preferably be **individually** undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should **not exceed three**.

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than **16** (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry orientedCOs.

A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

a) Use any software of Construction Management to prepare the scheduling of a project.

b) Use any software of Construction Management to determine the critical path for the given construction project.

c) Interpret the network figures used in given civil engineering projects.

d) Prepare a report on different forms of inventory storage along with your interpretation.

e) Collect the information about latest safety measures adopted at construction project.

f) Compare various construction management software.

g) Use relevant software to collect information about modern techniques of material management like JIT/SAP/ERP.

h) Prepare a report on "Site planning and mobilization" for a given site.

i) Study of BOT Road Project.

j)Study of standard Bidding process in State Government.

k)Study of procurement policies and procedures for a given construction company.

k) Collect the information about labour management practices in construction industry.

I) prepare a report on owing and operating cost of the given construction equipments.

13. SUGGESTED LEARNINGRESOURCES

No.	Title	Author	Publisher
1	Construction Project Management	K.K.Chitkara	Tata McGraw-Hill
2	Project Planning and Controlling with PERT And CPM	Dr. B.C.PunmiaK.K.K handelwal	Laxmi Publications (P)Ltd.
3	Construction Management and accounts	Harpalsingh	Tata McGraw-Hill
4	Construction of Structures and Management work	S.C.Rangwala	Charotar Publication
5	Construction Management practice	V.K.Raina	Tata McGraw-Hill

			,
6	Project Planning, Scheduling and Control in Construction: An Encyclopedia of Terms and Applications	Calin M.Popescu, ChotchaiCharo enngam	Wiley, New York, 1995
7	Construction Equipment and its Management	S.C.Sharma	Khanna Publication, New Delhi,1988.
8	Construction Planning and Management	P.S.Gahlot B.M.Dhir	Willey Eastern Ltd
9	Construction Project planning & Scheduling	Charles Patrick, Pearson	-
10	Construction Management and Planning	Sengupta and Guha	Tata McGraw Hill publication
11	Project Management-Planning and Control	Rory Burkey	Wiley,India 4th ed
12	Construction Planning, Equipment and Methods	Peurifoy, L., Schexnayder, C.J. and Shapira, A	McGraw Hill, New Delhi, 8th Edition, 2010
13	Construction Project Management Planning, Scheduling and Controlling	Chitakara	Tata McGraw Hill, New Delhi
14	Construction Engineering and Management	Seetharaman.S	Umesh Publication
15	Construction Equipment and its planning and Application.	Dr.Mahesh Varma	Metropolitan Book Company, New Delhi. 1983.

14. LIST OF SOFTWARE/LEARNING WEBSITES

- PrimaveraP6b
- www.slideshare.net
- www.civil.iitm.ac.in

15. PO-COMPETENCY-CO MAPPING

Semester VI	CO	CONSTRUCTION PROJECT MANAGEMENT(Course Code: 4360603)								
		POs and PSOs								
Compotonov	specific	Proble m Analys	3Design/ develop ment of	4Engineering Tools, Experimentat ion &Testing	5Engineering practices for	Project Manage ment	PO 7Life- long learning	PSO 1	PSO 2	PSO 3 (If needed)
<u>Competency</u>		r	nanage	ement, i	ides an un ncluding cheduling,	contra	icts,	subcont	racting,	

	 and quality and project closeout. Manage various resources and activities, effectively and efficiently using appropriate techniques and software to complete the construction project within stipulated time and allocated budget according to desired quality. 									
CO a) Describe construction project management and roles of various construction agencies	3	2	2	-	3	3	3	-	-	-
CO b) Explain contracts and tendering process	2	2	2	-	2	3	3	-	-	-
CO c) Develop the CPM and PERT network of various construction activities.	2	3	3	2	2	3	3	-	-	-
CO d) Show leadership skills required to manage various construction resources and achieve targets	2	2	2	2	3	3	3	-	-	-
CO e) Apply safety measures and legal aspects at various construction works.	2	3	1		3	2	3	-	-	-

17. COURSE CURRICULUM DEVELOPMENT COMMITTEE <u>GTU Resource Persons</u>

Sr. No.	Name and Designation	Institute	Contact No.	Email
1	Smt. Shubhra Maheshwari	G.P. Junagadh	0285-2681123	shubhramaheshwari1006@gmail.com
2	Smt. D. B. Joshi	G.P. Gandhinagar	079-2328 7433	dbjgpg@gmail.com
3	Shri D. V. Patel	G.P. Ahmedabad	079-26301285	dvpatel@gpahmedabad.ac.in

GUJARATTECHNOLOGICALUNIVERSITY,AHMEDABAD,GUJARAT

Competency-focusedOutcome-basedGreenCurriculum-2021 (COGC-2021)

CourseTitle:Project-II

(CourseCode: 4360604)

Diploma Programme in which this course is offered	Semesterinwhichoffered
CivilEngineering	6 th Semester

1. RATIONALE

In order to help the students development, live project challenges should be offered to them as often as possible. For the students to be able to use and apply engineeringbased knowledge and skills to address real world challenges, they must have first-hand experience and confidence. The selected pursuits should be relevant to student's academic interests and of professional relevance to organizations in the industrial sphere. So as to participate and manage a large civil engineering projects in future.

The Project and Seminar are both combined with the goal of developing a specific set of communication skills (report preparation, survey report writing, lab experiment results writing, participating in group discussions, verbally defending the project in the form of Seminar, etc.).

2. COMPETENCY

Thegoal of this project is to enhance capabilities among the students for comprehensive analysis and practices in a systemic way todevelopdifferenttypes of skills so that students areable to acquire following competencies:

- 1. Apply the theoretical and practical knowledge and abilities which have learned in disciplines and courses to a project that will work in a real-world working context, ideally one that is industrial
- 2. Describe the functioning of the industrial setting and its working practices.
- 3. Explain what entrepreneurship is and how to become an entrepreneur
- 4. Determine and compare the gap between the technical knowledge gained through the curriculum and the real industrial requirement and to make up for it by acquiring additional knowledge as needed
- 5. Field computing and gaining practical experience in the planning, designing and execution of civil engineering projects.

3. COURSEOUTCOMES

Upon successful completion of this course, students will be able to;

CO.1Apply principles of basic science and engineering fundamental in analysis, design and

operation of civil engineering systems.

CO.2Assess societal needs and plan suitable infrastructure

CO.3Analyze and design components of civil engineering projects

CO.4Develop team spirit and inter-personal dynamics for effective execution and management of projects

CO.5 Engage in lifelong learning and adapt to changing professional and societal needs

4. TEACHINGANDEXAMINATIONSCHEME

	TeachingScheme TotalCredits			ExaminationScheme							
(In	Hours	s)	(L+T/2+P/2)	Theor	yMarks	Practical	Marks	Total			
L	Т	Р	С	Ε	М	Ι	V	Marks			
0	0	6	3	0	0	60	40	100			

Legends: L-Lecture; T-Tutorial, P-Practical, E-Theory External, M - Theory Internal, I-Practical Internal, V - Practical External

5. COURSEDETAILS

The project is offered to the students of 5th and 6th semester in order to inculcate innovation and attitude to develop skills. A group of four to eight students (maximum of fifteen students) work as a team for major project work.

The project should be selected such that it could be completed within 5th and 6th semester.

Project work should be distributed in below mentioned phases (6th Sem)

- 1. Approval of PRC (6th Sem) :- At commencement of 6th semester students should get approval to continue the ongoing project work of 5th semester form PRC.
- 2. There should be at least two review for project work during semester

Note: Students should continue their 5th semester project in the 6th semester.

6. GUIDELINEFORTHEPROJECT-II, FORDIPLOMAENGINEERING

Project–II: 6th Semester (Marks:100), L:T:P – 0:0:6, Credits:3

- Out of 100 marks, 60 marks are to be given as Practical Internal as per scheme suggested.
- The college through internal assessment will assess the User Defined Problems (UDP)/Industry Defined Problems (IDP), submitted by students as per time limit prescribed by the university in the sixth semester.
- The remaining 40 marks are for the Practical External which shall be conducted by the GTU.
- Each defined project needs to be from Industry /Research organization/ Govt.organization/ socio-technical issues and according to the need of time for

solving reallifeproblems.

- There should be one Project Review Committee(PRC) in consists of following members
 - Head of Department (HOD)
 - Faculty member from the department-Project In charge
 - Internal faculty/Industry resource person

7. PROJECT GUIDELINE FOR STUDENT:

- After getting approval student should assign to the project guide in the beginning of 6thsemester and students may work on areas approved under the supervision of allotted supervisorsame as per 5th semester. In exceptional cases if it is required to be changed then it should be duly approved by PRC.
- There should be at least two project review presentation during the semester against PRC.The suggestions given by PRC have to be incorporated before completing the project.
- They may have to show their progress periodically to their supervisor as per directions given by supervisor.
- The students may submit their final project report as per specified formats as provided in this syllabus and duly signed/approved by their supervisor to the department at the end of semester.
- The internal assessment marks will be evaluated based on progressive evaluation and oral presentation by the internal supervisor

8. ROLE OF PROJECT REVIEW COMMITTEE:

- There should be one Project Review Committee(PRC), which consists of following members
 - Head of Department (HOD)
 - Faculty member from the department-Project In charge
 - Internal faculty/Industry resource person
- PRC will arrange two reviews for the project in semester
 - One review for finalizing project titles/proposals and allotment of supervisor for each group of students
 - One midterm review.
- The PRC will give suggestions for improving quality of each project.

9. ROLE OF SUPERVISOR/GUIDE:

- The supervisor will supervise/guide the group of students allotted to him throughout the semester.
- He/she will assess the students individually as per stipulated assessment guidelines and keep record of it.
- Suggest resources to the students.
- Guide students on how to address issues on environmental and sustainability. Environment friendly and having low or zero carbon emission projects will be given priority.
- Motivate continuously students allotted to him for doing best projects.

10. ASSESSMENTCRITERIAFOREFFECTIVEEVALUATION OFTHEPROJECT:

The Diploma 6^{th} Semester student's project-II will be evaluated as per the scheme suggested below.

60 Marks are for Progressive Assessment to be evaluated by Institute concern Faculty / Supervisor for the Project-II only based on following criteria.

Sr.No.	Description	Marks
1	Identification of problem and Framing of Problem Statement	5%
2	Problem Analysis	10%
3	Feasibility of proposed solution	10%
4	Adherence to Action plan	10%
5	Content appropriateness	5%
6	Technical knowledge and awareness related to the project	10%
7	Project Report and Presentation	5%
8	Question-Answer Technique	5%
	TOTAL	60

11. PO-CO MAPPING:

Semester:			F	Project-II (C	ourse Code: 4	350603)			
V				РО	s and PSOs					
Competency & Course Outcomes	PO:1 Basic & Discipline knowledge	PO:2 Problem Analysis	PO:3 Design/ development of solutions	PO:4 Engineering Tools, Experimentation &Testing	PO:5 Engineering practices for society, sustainability & environment	PO:6 Project Management	PO:7 Life-long learning	PSO:1	PSO: 2	PSO: 3
CO:1	3	3	3	3	3	3	3	-	-	-
CO:2	-	3	3	2	3	2	-	-	-	-
CO:3	3	3	3	3	2	2	3	-	-	-
CO:4	-	-	-	-	3	3	3	-	-	-
CO:5	-	-	3	3	3 on (?for the			-	-	-

Legend: '3' for high,'2' for medium, '1' for low or '-'for the relevant correlation of each competency, CO, with PO/ PSO

Note: These is suggested mapping, supervisor should change these mapping according to the type of project and assess accordingly.

12. SAMPLE EVALUATION RUBRICS:

Title and Feasibility (Problem Identification)

Parameters	Excellent	Adequate	Average	Satisfactory
Identification of problem & Framing of Problem Statement	Detailed and extensive explanation of the purpose and need of the project	Good explanation of the purpose and need of the project	Average explanation of the purpose and need of the project	Moderate explanation of the purpose and need of the project
Problem Analysis	Compete explanation of the key concepts , strong descriptions of the technical requirements of the projects	Compete explanation of the key concepts , Insufficient description of the technical requirements of the projects	Compete explanation of the key concepts but little relevance to literature, Insufficient description of the technical requirements of the projects	All key concepts are not explain and very little relevance to literature , Insufficient description of the technical requirements of the projects
Feasibility of proposed solution	Detailed and extensive explanation/ analysis of content	Collects a great deal of information and good study of the content	Collects a great deal of information and moderate study of the content	Collects information and satisfactory study of the content
Adherence to Action plan	Strictly adhered to the Action Plan prepared in advance and achieved all the mile stones within specified time limit.	Adhered to the Action Plan prepared in advance and achieved all the mile stones within time limit.	Followed the Action Plan prepared in advance but delayed in achieving one or two of them but ultimately completed the project within time limit.	Carried out the activities randomly without following the Action Plan but ultimately completed the project within time limit.

Parameters	Excellent	Adequate	Average	Satisfactory
Content appropriateness	Appropriate Content and also presented in a logical sequence	Content is moderately relevant, but presented in a logical sequence	Content is moderately relevant, but presented randomly without logical concern	Presented content was partially relevant and also not in logical concern.
Technical knowledge and awareness related to the project	Extensive knowledge related to the project	Adequate knowledge related to the project	Average knowledge related to the project	Lacks sufficient knowledge
Project Report	Project report is according to specified format, reference included	Project report is according to specified format, but reference not included	Project report is partially as per specified format	Project report is not as per specified format

Abstract and Depth of Knowledge/Analysis & Result / Implementation & Execution

Presentation and viva

Parameters	Excellent	Adequate	Average	Satisfactory
Presentation	Presentations are appropriate and well delivered, Proper eye contact with audience and clear voice with good spoken language	Presentations are appropriate and well delivered, clear voice with good spoken language but less eye contact with audience	Presentations are appropriate but not well delivered, eye contact with few audience and unclear voice	Content of Presentations are not appropriate, eye contact with few audience and unclear voice
Question- Answer Technique	Answered all the questions satisfactorily.	Answered some questions satisfactorily.	Answered 1 or 2 questions satisfactorily.	Unable to answer the questions satisfactorily.

13. ARRANGEMENT OF CONTENTS IN PROJECT REPORT:

The sequence in which the project report material should be arranged as follows:

- 1) Cover Page
- 2) Title Page
- 3) Certificate
- 4) Abstract
- 5) Table of Contents
- 6) List of Tables
- 7) List of Figures
- 8) List of Abbreviations and Nomenclature
- 9) Chapters
 - i. Introduction
 - ii. Exhaustive Literature Survey/Review of Literature
 - iii. Define the problem.
 - iv. Body of project (Developing the main theme of the present investigation project work)
 - v. Analysis/Results and Discussions
 - vi. Conclusions
 - vii. Future Enhancements / Recommendations
- 10) References
- 11) Appendices

Each chapter should be given an appropriate title. Tables and figures in a chapter should be placed in the immediate vicinity of the reference where they are cited. Footnotes should be used sparingly. They should be typed single space and placed directly underneath in the very same page, which refers to the material they annotate.

14. ARRANGEMENT OF PARAGRAPH IN A CHAPTER:

- Each paragraph in a chapter should be properly numbered for example, 1.1, 1.2 etc., where first digit represents the Chapter Number and second digit the paragraph number. There is no need to indicate the number for the first paragraph in a chapter.
- Sub-paragraphs, if any indicated as 1.1.1, 1.1.2 etc. i.e. first digit representing the chapter, the second representing the paragraph and third representing the sub-paragraph.
- Don't underline the headings or subheadings or side heading. Instead use the bold letters.

15. APPENDICES:

- Appendix showing the detailed data, design calculations, derivation etc
- Appendices are provided to give supplementary information, which is included in the main text may serve as a distraction and cloud the central theme.
- Appendices should be numbered using Arabic numerals, e.g. Appendix 1, Appendix 2, etc. Appendices, Tables and References appearing in appendices should be numbered and referred to as appropriate places just as in the case of chapters.
- Appendices shall carry the title of the work reported and the same title shall be made in the contents page also.

16. LIST OF REFERENCES:

- References should be numbered from 1st chapter to the last chapter in ascending order and should be shown in square brackets.
- The bibliography list should be made strictly in alphabetical order of the name of the authors.
- The listing of references should be typed 4 spaces below the heading
- **References**in alphabetical order in single spacing left justified.
- The reference material should be listed in the alphabetical order of the first author.
- The name of the author/authors should be immediately followed by the year and other details.
- A typical illustrative list given below relates to the citation example quoted above.

[Chapter]Author Name, "Title of the book or paper", Publisher name, (year), Page No

17. References:

 [1] Ariponnammal, S. and Natarajan, S. 'Transport Phenomena of SmSel – X Asx', Pramana (1994) – Journal of Physics Vol.42, No.1, pp.421-425.

18. TABLE AND FIGURES:

- In the references by the word Table, is meant tabulated numerical data in the body of the project report as well as in the appendices.
- All other non-verbal materials used in the body of the project work and appendices such as charts, maps, photographs and diagrams may be considered as figures.

19. TYPING INSTRUCTIONS:

- The impression on the typed copies should be black in colour.
- The project report should be submitted in A4 size (29 cm x 20 cm).
- Good quality or Bond paper should be used for the preparation of the project report.
- Typing should be done on one side of the paper with character font in size 12 of Times New Roman.
- 1.5 line spacing should be used for typing the general text.
- Subheading should be typed in bold Font size 12 and heading bold Font size 14.
- The layout should provide a margin of 1.50 Inches on the left, 1.00 Inches on the top, bottom and right.
- The page numbers should be indicated at the top-middle or bottom-middle of the each page.
- Heading s should be in bold should not underline the heading/subheadings and should not put colons (:) in headings or subheadings.

APPENDIX:1(Coverpage)

(AtypicalSpecimenofCoverPage)<FontStyleTimesNewRomanBold>

TITLEOF PROJECTREPORT

<FontSize18><1.5line spacing>

APROJECTREPORT

<FontSize14>

Submittedby <FontSize14><Italic>

NAMEOFTHE CANDIDATE(S)

<FontSize16>

In partial fulfillment for the award of the diplomain

<FontSize14><1.5linespacing><Italic>

CIVILENGINEERINGPROGRAMME

<FontSize16>

IN DEPARTMENTOFCIVILENGINEERING Font size(14) logo

NAMEOFTHECOLLEGE

<FontSize14>

GUJRAT TECHNOLOGICAL UNIVERSITY

<FontSize16> <1.5line spacing>

Yearofsubmission:(MONTH&YEAR) <FontSize14>

APPENDIX: 2(Titlepage)

(AtypicalSpecimenofTitlePage)<FontStyleTimesNewRoman -Bold> A Project Reporton

<TITLEOF THEPROJECTWORK>

Submitted for partial fulfilment of the requirements for the award of the

DIPLOMAIN CIVIL

ENGINEERING

IN

CIVILENGINEERINGPROGRAMME

BY BATCH

<Mr./Ms.NameoftheStudent(RollNo.)> <Mr./Ms. Name of the Student(RollNo.)> <Mr./Ms. Name of the Student(RollNo.)> <Mr./Ms. Name of the Student(RollNo.)> <Mr./Ms. Name of the Student(RollNo.)>

Undertheguidanceof

<NameoftheStaff with designation>

Civil Engineering Department

Departmentof CivilEngineering <<NAMEOFINSTITUTE>> <<ADDRESSOFINSTITUTE>>

APPENDIX: 3(Certificate)

(AtypicalspecimenofBonafideCertificate) <FontStyleTimesNewRoman>

COLLEGE NAME

<FontStyleTimesNew Roman –size-18>

CERTIFICATE

<FontStyleTimesNew Roman –size-16>

<FontStyleTimesNew Roman –size-14>

Isthebonafideworkof"......NAMEOFTHECANDIDATE"

who has carried out the project work under my supervision.

<<SignatureoftheHeadofthe Department>><<SignatureoftheProjectSupervisor>>

SIGNATURE

SIGNATURE

<<Name>>

<<Name>>

HEADOFTHE DEPARTMENTPROJECTSUPERVISOR

<<AcademicDesignation>>

<<Department>>DepartmentofCivilEngineering

<<Fulladdressofthe Dept &College>><<FulladdressoftheDept&College>>

20. COURSE CURRICULUM DEVELOPMENT COMMITTEE:

No.	Name and Designation	Institute	Email ID
1	H. T. Patel, Lecturer in Civil Engineering	K D Polytechnic, Patan	htpatel20@gmail.com
2	D. N. Sheth, Lecturer in Civil Engineering	Government Polytechnic, Palanpur	devendra_civil@yahoo.com

GTU Resource Persons

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-VI

Course Title: Building Services

(Course-4360605)

Diploma programme in which this course is offered	Semester in which offered
Civil Engineering	6 th Semester

1. RATIONALE

The building services encompass a wide range of systems, including electrical, mechanical and civil engineering services. They are essential for various types of buildings, such as residential, industrial, high-rise, hotels, motels, and monumental structures; and they ensure the efficient and effective operation of buildings for their intended purposes

No building can be effectively utilized without these services. Additionally, the current need for ecofriendly and sustainable designs, including green building principles and grey-water management. Therefore, it is expected for civil engineering students to know about the basic principles, installation procedures, and the operation and maintenance of these building services. It is here clarified that some services like plumbing and sanitary services have already been taken care of in a separate course, so they are not included in this particular curriculum.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

- 1. Plan various types of services required for different types of buildings.
- 2. Supervise the execution of installation of services such as lift, fire protection, elevators, escalators, acoustic and sound insulations, lightings, air conditioning and allied services for creating human comfort in the buildings.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

- a) Manage building services provisions in big construction sites.
- b) Synchronize the installation of building services as per the sequence of construction activities.
- c) Select the suitable electrical as well mechanical services for particular requirements of buildings.
- d) Ensure Fire Protection, Acoustics and Sound insulation along with green building applications to the new constructions.

Teachi (In	ing Scl Hours		Total Credits (L+T/2+P/2)	Examination Scheme				
				Theory Marks Practical Marks Tot		Total		
L	т	Р	С	СА	ESE	СА	ESE	Marks
3	-	2	4	30*	70	25	25	150

4. TEACHING AND EXAMINATION SCHEME

(*):Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit, CA - Continuous Assessment; ESE -End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the sub-components of the COs. Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

S.	Practical Outcomes (PrOs)	Uni	Approx.
No		t	Hrs.
•		No.	required
1	Prepare Lighting plan for a commercial complex	1	2*
2	Prepare electrical layout plan for given building.	2	2*
3	Prepare Lift standards as per norms.	3	2*
4	Identify proper locations for Lift/ Escalator/ Elevator in a given commercial complex.	3	2*
5	Suggest noise control methods for a given commercial complex.	4	2*
6	Prepare a case study for the fire fighting services for commercial building in the nearby area.	4	4*
7	Compute space requirement for Rooftop rain water harvesting system and Prepare rain water harvesting layout plan for a building.	5	2*
8	Prepare a report on implementing the reuse of grey water of an existing hotel building in a nearby area.	5	4*
9	Visit a residential building & commercial building under construction and prepare layout for electrical, water supply, sanitary and related allied services of civil engineering and prepare site visit detailed report	1, 2, 3, 4, & 5	4*

10	Topic of seminar shall be given to a group of students not more than	1,	4*
	three. The students are required to submit report including power	2,	
	point presentation and present/ defended the seminar in the presence	3,	
	of students and teachers.	4, &	
		5	
	Total		28

<u>Note</u>

- *i.* More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- *ii. The following are some sample 'Process' and 'Product' related skills(more may be added/deleted depending on the course)that occur in the above listed Practical Exercises of this course required which are embedded in the COs and ultimately the competency.*

S. No.	Sample Performance Indicators for the PrOs	Weightage in %
	For PrOs 1, 2	
1	Neatness, Cleanness in Sketch book/ Drawing Sheet	10
2	Uniformity in Drawing and line work	10
3	Creating given drawing	40
4	Dimensioning the given drawing and writing text	20
5	Answer the question	10
6	Submission of drawing in time	10
	Total	100

S. No.	Sample Performance Indicators for the PrOs	Weightage in %				
	For PrOs 9					
1	Discipline	10				
2	Involvement during site visit	20				
3	Data collection at site	20				
4	Organization of report	20				
5	Answer the question	10				

6	Timely submission of report	20
	Total	100

S. No.	Sample Performance Indicators for the PrOs	Weightage in %
	For PrOs 3, 4, 5, 6, 7, 8	
1	Data collection	20
2	Calculation, Write up, Grammar etc.	20
3	Organization of report	20
4	Answer the question	20
5	Timely submission of report	20
	Total	100

S. No.	Sample Performance Indicators for the PrOs	Weightage in %
	For PrOs 10	
1	Initiative	20
2	Data Collection	20
3	Content of Presentation (Use of multi media)	20
4	Presentation (Body Language- Gesture, Posture etc.)	20
5	Answer the question	20
Total		100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

These major equipments with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practical in all institutions across the state.

S. No.	Equipment Name with Broad Specifications	PrO.No.
1		

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs and PrOs. More could be added to fulfil the development of this competency.

- a) Work as a leader/a team member.
- b) Follow safe practice on site/ lab.
- c) Maintain tools and equipment.
- d) Follow ethical practices.
- e) Practice environmental friendly methods and processes. (Environment related)

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

i. 'Valuing Level' in 1st year ii. 'Organization Level'

in 2nd year.

iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

Only the major Underpinning Theory is formulated as higher level UOs of *Revised Bloom's taxonomy* in order development of the COs and competency is not missed out by the students and teachers. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Unit Outcomes (UOs) (4 to 6 UOs at Application and above level)	Topics and Sub-topics
Unit– I Introductio n	 1a. Describe basics of building services. 1b. Apply various types of services as per needs of building. 1c. Apply Lighting and Ventilation provisions 	 1.1 Definitions 1.2 Objective and uses of services 1.3 Applications of services for different types of building 1.4 Classification of building services 1.5 Types of services and selection of services 1.6 Natural and artificial lighting: principles and factors 1.7 Arrangement of luminaries, Distribution of illumination, Utilization factors 1.8 Necessity of Ventilation Types – Natural and Mechanical Factors to be considered in the design of Ventilation

Unit– II	2a. Prepare electrical services	2.1 electrical services in the building:
Electrical Services	requirement and Layout of a given building	Technical terms and symbols for electrical installations and Accessories of

Unit	Unit Outcomes (UOs) (4 to 6 UOs at Application and	Topics and Sub-topics
	above level)	

of Solar PV Technology, overview of Rooftop Solar Sector in India, type of Rooftop Solar PV Power Plants and operating principles.

Unit – III Mechanical Services in Buildings	 3a. Identify the services like lift, elevators, conveyors and escalators, etc. 3b. Plan various types of mechanical services as per requirements of building 3c. Select the right type of air conditioning and the position of air conditioning 	 3.2 Lift 3.2 Lift 3.2.1 Definition, Types of Lifts, Design Considerations, Location, Sizes, Component parts- Lift Well, Travel, Pit, Hoist Way, Machine, Buffer, Door Locks, Suspended Rope, Lift Car, Landing Door, Call Indicators, Call Push 3.3 Elevators & Escalators 3.3.1 Different types of elevators and Escalators, Freight elevators, Passenger elevators, Hospital elevators, 3.3.2 Uses of different types of elevators. 3.4 Dumbwaiters 3.4.1 Different types of Dumbwaiters 3.4.2 Uses of different types of Dumbwaiters 3.5.1 Definition, Purpose, Principles, Temperature Control, Air Velocity Control, Humidity 				
Unit	Unit Outcomes (UOs) (4 to 6 UOs at Application and above level)	3.5.1 Definition, Purpose, Principles, Temperature Control, Air Velocity Control, Humidity Control, Air Distribution system, Cleaners, Filters, Spray washers, Electric precipitators, Topics and Sub-topics				
		3.5.2 Types of Air Conditioners				

Unit – IV Fire Protection, Acoustic and Sound Insulations	 4a. Identify the services of Fire 4b. Apply various types of fire services as per requirements of building 4c. Select the suitable type of Fire protection. 4d. Provide Acoustic and sound insulation as per needs 	 4.1 Introduction 4.2 Causes of fire and Effect s of fire 4.3 General Requirements of Fire Resisting building as per IS and NBC 2005 4.4 Characteristics of Fire resisting materials 4.5 Maximum Travel Distance 4.6 Fire Fighting Installations for Horizontal Exit, Roof Exit/ Fire Lifts, External Stairs 4.7 Requirement of good Acoustic 4.8 Various sound absolvent 4.9 Factors to be followed for noise control in residential building
Unit – V Miscellaneo us Services & Green Buildings Provision	5a. Plan for Rain Water Harvesting in the new buildings5b. Apply Green Building technology aspects	 5.1. Rain water Harvesting for buildings 1.1 Rooftop rainwater harvesting 5.2. Grey water reuse 2.1 Significance of Grey water reuse 2.2 Components of Grey water system its management. 5.3. Concept of GREEN buildings. 5.4. Components of GREEN building.

Note: The UOs need to be formulated at the 'Application Level' and above of Revised Bloom's Taxonomy' to accelerate the attainment of the COs and the competency.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN

Unit	Unit Title	Teachin	Distribution of Theory Marks				
No.		g Hours	R	U	Α	Total	
			Level	Level		Marks	
Ι	Introduction	6	2	4	4	10	
II	Electrical Services and Layout	12	4	8	8	20	
III	Mechanical Services in Buildings	10	4	8	8	20	
IV	IV Fire Protection, Acoustic and Sound		2	4	4	10	
	Insulations						
V	Miscellaneous Services and Green Buildings	6	2	4	4	10	
	Provision						
	Total	42	14	28	28	70	

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/ questions assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary slightly from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Visit of construction sites to observe the current services practices and prepare a report.
- b) In a group of 4-5 students prepare an internet/library-based presentation for each of above topics considering recent practices prevailing across the world.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No.* 4 means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.11*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on environ and sustainability.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be **individually** undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should **not exceed three.**

The micro-project could be industry application based, internet-based, workshopbased, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than **16** (*sixteen*) *student engagement hours* during the course. The student ought to submit micro-project by the end of the semester to develop the industry oriented COs. A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) **Green Solutions:** Prepare a report suggesting replacement of/ augmenting atleast 10 nos. of items to convert it into a Green Building and justify it in terms of environmental impact.
- b) **Green Solutions:** Prepare a report on implementing recycling of grey water for your Institute.
- c) **Mechanical Services:** Collect the relevant information of recent technologies in elevators and prepare a report on it.
- d) **Mechanical Services:** Suggest the type of mechanical services to be provided in a building as per its functional requirements and compute the space requirements for it as per guidelines of national building code.
- e) **Miscellaneous Services:** Prepare a report on BMS including a case study.
- f) **Miscellaneous Services:** Collect the relevant information of different techniques for RWH and submit a report on it.
- g) **Miscellaneous Services:** Prepare a report on enhancing the Building services of an existing building in nearby area.
- h) Lighting and Ventilation: Prepare a summary report with reference to lighting, ventilation and acoustic system of a building.
- i) Air Conditioning: Plan and draw in detail ventilation and air-conditioning for a given building
- j) Safety: Prepare a report on modern Fire Safety, Detection and Protection systems.
- k) Acoustic and Sound Insulations: Prepare a report on executing the requirements of any sound proof room.

13. SUGGESTED LEARNING RESOURCES

S.	Title of Book	Author	Publication with place, year			
No			and ISBN			
•						
1	The A to Z of Practical Building	Sandeep Mantri	Satya Prakashan, New Delhi			
	Construction and its Management		ISBN-139351922629-978 :			
2	Plumbing Design and Practice	Deolalikar, S. G.	McGraw-Hill, New Delhi, 2004			
			ISBN: 9780074620694			
3	Fire Services in India: History,	Bag, S. P.	Mital Publications, New Delhi,			
	Detection, Protection,		1995,			
	Management, Environment,		ISBN-13: 978-8170995982			
	Training and Loss Prevention					
4	Principles of Fire Safety	Akhil Kumar	Prentice Hall India Learning			
	Engineering: Understanding Fire	Das	Private Limited, New Delhi,			
	and Fire Protection		2014,			
			ISBN-13: 978-8120350380			

5	National Building Code of India - 2005	Bureau of Indian Standards	BIS, New Delhi
6	Building Services	S. M. Patil	Seema Publication, Mumbai Revised edition
7	A text book on Building Services	R. Udaykumar	Eswar Press, Chennai
8	Green Building Fundamentals	G Harihara Iyer	Notion Press, Vanagaram,
S.	Title of Book	Author	Publication with place, year
No			and ISBN
•			
			Chennai
			ISBN-13: 979-8886416091

14. SOFTWARE/LEARNING WEBSITES

- a) https://www.bis.gov.in/
- b) https://bmsbuildingservice.com/
- c) https://plumbingservices.com/
- d) http://www.asce.org/
- e) https://www.astm.org/

15. PO-COMPETENCY-CO MAPPING

Semester V	Building Services (Course Code: 4****) POs and PSOs									
Competency & Course Outcomes	Discipline	em Analy	Design/ develop ment of	PO 4 Engineering Tools, Experiment ation &Testing	practices for	PO 6 Project Manag ement	PO 7 Lifelong learnin g	PSO 1	PSO 2	PSO 3 (If neede d)
Competency 3. Plan vari us types of services required for different buildings. 4. Supervise installation and testing of services such protection, elevators, escalators, acoustic and soulightings, air conditioning and allied services. 5. Execute time buildings.							such as l d sound	lift, fire insulatio		
Course Outcomes CO a) Manage building services provisions in big construction sites .	3	2	-	-	3	-	3	-	-	-

CO b) Synchronize the ir of building service the sequence of construction activ	es as per	3	3	3	-	3	2	3	-	-	-
CO c) Select the suitable e well mechanical se particular requirem buildings.	rvices for	3	2	2	-	3	-	3	-	-	-
CO d) Ensure Fire Protecti Acoustics and Soun insulation along wi building applicatior new constructions.	nd th green ns to the	3	2	2	-	3	-	3	-	-	-

Legend: '3' for high, '2' for medium, '1' for low or '-' for the relevant correlation of each competency, CO, with PO/ PSO

17. COURSE CURRICULUM DEVELOPMENT COMMITTEE <u>GTU Resource Persons</u>

Sr. No.	Name and Designation	Institute	Contact No.	Email	
1.	Smt. D. B. Joshi	G.P. Gandhinagar	079-2328 7433	dbjgpg@gmail.com	
2.	Shri D. V. Patel	G.P. Ahmedabad	079-26301285	dvpatel@gpahmedabad.ac.in	

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-VI

Course Title: Traffic Engineering (Course Code: <u>4360606</u>)

Diploma programme in which this course is offered	Semester in which offered
Civil Engineering	6 th Semester

1. RATIONALE

Traffic engineering is a branch of civil engineering that uses engineering techniques to achieve the safe and efficient movement of people and goods on roadways. Knowledge and understanding of the basic concept of traffic Engineering is highly essential for the engineers designing and executing the road laying projects in order to make road. Traffic engineering plays a pivotal role in all facets of transportation, and given the ever-expanding population and infrastructure developments. This includes the planning and implementation of traffic control elements such as traffic sings, signals, and road markings to enhance safety for both drivers and pedestrians. The course aims to cultivate expertise in conducting diverse traffic surveys, deciphering and making sense of the collected data, and proposing solutions in the form of traffic control devices. At diploma level, students are expected to perform various traffic surveys, analyse traffic data and interpret the results appropriately in order to apply their knowledge in designing good road transport systems.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

- Execute the working and control of traffic engineering elements.
- Determine traffic requirements for road design after conducting the traffic surveys.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

- a) Analyze the road traffic characteristics.
- b) Undertake various types of road traffic studies.
- c) Use the relevant road traffic control devices.
- d) Interpret traffic management system.

- e) Suggest preventive measures to avoid accidents by analyzing the traffic conditions at site and maintain the road environment.
- f) Aware about advanced technology in traffic engineering.

4. TEACHING AND EXAMINATION SCHEME

Teaching Scheme (In Hours)		Total Credits (L+T/2+P/2)		Ex	amination S	Scheme		
			Theory	y Marks	Practical	l Marks	Total	
L	т	Р	С	СА	ESE	СА	ESE	Marks
3	-	2	4	30*	70	25	25	150

(*):Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit, CA - Continuous Assessment; ESE -End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the sub-components of the COs. Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

S. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
1	Identify the road traffic characteristics for any existing road.	Ι	02*
2	Perform traffic volume study at intersection.	П	04*
3	Carry out O-D Survey within area of your town/city.	II	04*
4	Calculate at least eight examples based on spot speed study and signal cycle time.	II, IV	02*
5	Measure the spot speed on corridor of road way to analyze the percentile speed graphically.	II	02
6	Prepare a report of a field visit to any major road intersection in your locality to identify the type, working of traffic signals along with your recommendations if any.	III	02

	Total		28
12	Seminar	-	04*
	Draw the collision diagram for any case study of road accident. Locate the points of conflicts in the diagram of a busy intersection on a road in your locality.	V	02*
	Prepare a report of a field visit to any urban road way to identify the road signs, corresponding markings on road, traffic island, road intersection and existing street lighting system.	IV, V	04*
9	Prepare sketches for Road marking - Pavement marking, Kerb marking, Object Marking and Reflector marking.	IV	02*
8	Prepare sketches for Traffic Sign-Regulatory, Warning and Informatory sign.	III	02*
7	Suggest the relevant vehicle parking system for your campus along with your recommendations in the form of a report.	II	02*

<u>Note</u>

- *i.* More *Practical Exercises* can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- *ii.* The following are some **sample** 'Process' and 'Product' related skills(more may be added/deleted depending on the course)that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

S. No.	Sample Performance Indicators for the PrOs	Weightage in %
	For PrOs 8,9,11	
1	Prepare drawing/sketches	40
2	Neatness, accuracy in work and drawings.	20
3	Notation in the given drawing and writing text.	20
4	Answer the questions.	10
5	Submission of drawing in time	10
	Total	100

S. No. Sample Performance Indicators for the PrOs Weightage in %
--

	For PrOs 4							
1	Calculate numerical based on given data.	40						
2	Accuracy in calculation.	30						
3	Answer the questions	20						
4	Submission of example in time.	10						
	Total	100						

S. No.	Sample Performance Indicators for the PrOs	Weightage in %								
	For PrOss1, 2, 3, 5,6,7,10									
1	Participation in site visit/perform survey	30								
2	Data collection during site visit/survey	20								
3	Technical involvement during site visit/survey	20								
4	Preparation and submission of report/survey data	20								
5	Timely submission of report	10								
	Total	100								

S. No.	Sample Performance Indicators for the PrOs	Weightage in %								
	For PrOs 12									
1	Initiative, topic selection	20								
2	Data Collection, preparation of presentation	30								
3	Content of Presentation (Use of multi media)	20								
4	Presentation (Body Language- Gesture, Posture etc.)	20								
5	Answer the question	10								
Total		100								

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

These major equipments with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practical in all institutions across the state.

S. No.	Equipment Name with Broad Specifications	PrO.No.
1	Computer system - with basic configuration	-

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned Cos and PrOs. More could be added to fulfil the development of this competency.

- a) Work as a leader/a team member.
- b) Follow safe practice on site.
- c) Follow ethical practices.
- d) Practice environmental friendly methods and processes. (Environment related)

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1^{st} year ii. 'Organization Level' in 2^{nd} year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

Only the major Underpinning Theory is formulated as higher level UOs of *Revised Bloom's taxonomy* in order development of the COs and competency is not missed out by the students and teachers. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit Unit Outcomes (UOs) Topics and Sub-topics
--

Unit – I Fundamental of Traffic Engineering	1aDescribethecharacteristicsofroad usersin1bthegivensituation.	 1.1 Traffic engineering- Definition, objects, scope 1.2 Road user's characteristicsphysical, mental, emotional factors. Vehicular characteristics-width,
	Describe the vehicular 1c characteristics for the given situation. 1d Calculate reaction time of driver in the given situation.	speed, efficiency of breaks. Road characteristics-gradient,
	Explain the factors affecting the reaction time for the given situation.	curve of a road, design speed, 1.4 friction between road and tyre surface. Reaction time-factors affecting reaction time. PIEV 1.5 Theory.

Traffic Studiesvolume for the givenInformation2bsection of road.2.2studies.	Studies-types, purpose,
2ccount data collected for the given road. Analyze spot speed study data collected for the given road.definition collection data (mar 2.32d2danalyze spot speed study given road. Design, develop and suggest the improvement for the parking system at the given2.3definition collection data (mar 2.32d2.4analysis o study and Speed study	on required for traffic ume study- purpose, Methods of of traffic volume count ual, automatic recorders, r method), oresentation and traffic data. of Origin and Destination its methods. udies-spot speed studies esentation

Unit– III Traffic Control Devices	 3a Classify traffic control devices. 3b Interpret traffic Signs. 3c Design traffic signals for 3d given intersection of road. Classification of road marking 	 3.1 Importance and general principal of traffic control devices. 3.2 Different types of traffic sign as per 3.3 IRC recommendation. Traffic Signals – Types of traffic signals with merit and demerits, phasing of traffic signals. 3.4 Design of signal cycle time by Fix time cycle, IRC method, Approximate method, Webster's method. 3.5 Road marking - Pavement marking, Kerb marking, Object Marking, Reflector marking.
Unit – IV Traffic Management	 4a Describe Traffic management policy and 4b measures. 4c Discuss street furniture. Explain traffic regulations and traffic Geometrics. 	 4.1 Basic principles of traffic 4.2 management. Street furniture types - Roadway delineators, Hazard marker, Object marker, Speed breaker, Rumble strips, Guard Rails, Safety Barriers, Traffic Attenuators, Barricades and channelizes 4.3 Traffic Regulations - Basic principle, Scope, Traffic lows. Traffic Geometrics - Intersection at grade, Interchange, Traffic Island, Terminal Facilities.
Unit	Unit Outcomes (UOs)	Topics and Sub-topics

Unit – V Road Accident and Environment	5a 5b 5c 5d 5e 5f	Analyze the causes of accident occurred and Suggest preventive measures to avoid the accidents on the given road section. Create awareness about the traffic rules and laws at selected location. Suggest the street lighting system for the given road section. Recommend the relevant type of trees for road side plantation. Justify the need of protecting the road side plantation. Describe the methods of protecting the road side plantation.	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	Road accidents-Definition, types (Collision and non-collision accidents), Causes, Prevention of road accidents. Reporting and recording of an accident. Collision and condition diagram. Considerations regarding road safety. Legislation and law enforcement education and propaganda. Street lighting-definition, sources necessity, types-luminaire, foot candle, lumen, factors affecting their utilization and maintenance. Factors affecting visibility at night. Arboriculture- definition, objectives, factors affecting selection of type of trees. Maintenance of trees-protection and care of road side trees.
Unit – VI Advancement in Traffic Engineering	6a 6b 6c	Discuss the role of information technology in improving traffic system. Know technology used in traffic management system. Discuss future of traffic management	6.1 6.2 6.3	Brief overview of Highway Traffic Management System (HTMS), Intelligent Transportation System (ITS). Smart Traffic Management System (STMS) – Objective, Benefits. Brief overview of technology used in traffic management system - IoT sensor.

Note: The UOs need to be formulated at the 'Application Level' and above of Revised Bloom's Taxonomy' to accelerate the attainment of the COs and the competency.

9. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Marks					
No.		Hours	R Level	U Level	A Level	Total Marks		
I	Fundamentals of Traffic Engineering	04	04	-	-	04		
П	Traffic Studies	08	02	04	08	14		

Ш	Traffic Control Devices	10	04	08	06	18
IV	V Traffic Management		04	06	08	18
V	Road Accident and Environment	06	02	06	04	12
VI	Advancements in Traffic Engineering	04	04	-	-	04
	Total	42	20	24	26	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may vary slightly from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Prepare journals based on practical performed in laboratory.
- b) Group discussion on traffic jams and related probable solutions in the city.
- c) Undertake micro-projects.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No. 4* means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.11*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on environ and sustainability.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-projects are group-based. However, in the fifth and sixth semesters, it should be preferably be **individually** undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should **not exceed three**.

The micro-project could be industry application based, internet-based, workshopbased, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than **16** (sixteen) student engagement hours during the course. The student ought to submit micro-project by the end of the semester to develop the industry oriented COs. A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Prepare a model of traffic controlling devices.
- b) Make posters showing traffic safety and awareness.
- c) Prepare the charts showing different types of road signs.
- d) Measure the spot speed on corridor of road way to analyze the percentile speed graphically.
- e) Prepare a report of a field visit to any major road intersection in your locality to identify the type, working of traffic signals along with your recommendations.
- f) Prepare a report of a field visit to any urban road way to identify the road signs and corresponding markings on road.
- g) Prepare a report on advanced road marking machinery and materials.
- h) Perform traffic survey of busy road junction of city in groups and to suggest measures for improvement.
- i) Prepare a report of a field visit to any urban road to identify the traffic island along with its sketch.
- j) Undertake the process of planting, protecting and maintaining the trees along the road.
- k) Identify the existing street lighting system of any two types of roads.
- I) Locate the points of conflicts in the diagram of a busy intersection on a major urban road in your locality.
- m) Identify the existing type of trees to suggest any relevant maintenance required.

13. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication with place, year and ISBN
-----------	---------------	--------	---------------------------------------

1	Transportation Engineering	Arora, N. L.,	Khanna Publishers, Delhi, 1996.ISBN: 817319-0933.
2	Traffic Engineering and Transport Planning	Kadiyali, L.R.	Khanna Publishers, Delhi, 2001,ISBN:10: 8185240779:
3	Transportation Engineering Vol. I & II	Vazirani, VN Chaondola, SP	Khanna Publishers. Delhi, 2016 ISBN: 9780128038185; 9780128038895
4	Traffic planning and design	Saxsena. SC	Dhanpat Rai & Sons Delhi. 2016 ISBN-10: 8123913500
5	Indian Highways- IRC Journal	Journalmonthly issue	IRC (Indian Road Congress), India, 1973, ISSN: 0376-7256
6	IRC:67- 2022,IRC:SP:552014, IRC:SP-044, IRC:53-2012	IRC	

14. SOFTWARE/LEARNING WEBSITES

- 1. https://nptel.ac.in
- 2. https://www.mhi.com/products/transport/intelligent_transport_system_htms.html
- 3. https://morth.nic.in/sites/default/files/Finalized_Draft_AIS_140_regarding_Intelligent_Trans portation_Systems_.pdf
- 4. https://indiaai.gov.in/article/role-of-iot-in-road-safety-and-traffic-management 5. https://your.visum.ptvgroup.com/vision-traffic-suite-students-en

15. PO-COMPETENCY-CO MAPPING

	Semester V		Traffic Engineering (Course Code:))		
					PO	s and PSO	s				
& (Competency Course Outcomes	PO 1 Basic& Discipline specific knowledg e		PO 3 Design/ developm ent of solutions	Engineering	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Manageme nt	PO 7 Lifelong learning		PSO 2	PSO 3 (If need ed)
Competency • Execute the working and control of traffic engineering elements. • Determine traffic requirements for road design after conducting the tr • Determine traffic requirements for road design after conducting the tr						veys.					
COa)	Analyze the road traffic characteristics.	3	-	-	-	2	2	3			

COb)	Undertake various types of road traffic studies.	3	3	2	2	3	3	3		
COc)	Use the relevant road traffic control devices.	3	2	2	3	3	2	3		
Cod)	Interpret traffic management system	3	2	-	2	3	3	3		
COe)	Suggest preventive measures to avoid accidents by analyzing the traffic conditions at site and maintain the road environment.	3	2	-	3	2	2	3		
,	Aware about advanced technology in traffic engineering.	2	2	2	2	2	2	3		

Legend: '3' for high, '2' for medium, '1' for low or '-'for the relevant correlation of each competency, CO, with PO/ PSO

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No.	Name and Designation	Institute	Contact No.	Email
1	Shri C. B. Patel	G.P. Ahmedabad	079-26301285	cbpatel@gpahmedabad.ac.in
2	Miss P. P. Patel	G. P. Porbandar	0286-2220553	purvi2068@gmail.com

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU) Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-VI Course Title: Ground Water Engineering (Course Code: 4360607)

Diploma programmer in which this course is offered	Semester in which offered
Civil Engineering	Six

1. RATIONALE:

Groundwater engineering, is a branch of engineering which is. concerned with groundwater movement and design of wells, pumps, and drains. Including prevention of sea water intrusion .The main. concerns in groundwater engineering include groundwater contamination, conservation of. supplies, and water quality. Due to over exploitation and pollution of surface water, ground water is the only remaining source to satisfy different types of water demands. However, the ground water table is decreasing due to excess utilization and lack of recharging. In this scenario it is must for civil engineers working in the area of water resource management as well as all civilian to take measures to improve ground water recharging and avoid contamination. This course attempts to provide knowledge and skills for effective ground water management.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop required skills in the students so that they are able to acquire following competencies:

□ Take steps to enhance ground water recharge and prevent its contamination

3. COURSE OUTCOMES (COs)

The theory should be taught and exercises should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor, and affective domain to demonstrate following course outcomes.

- Interpret different terms related to ground water and process of ground water survey.
- Find suitable method of artificial recharge of ground water for given conditions.
- Design a tube well for given condition.
- Interpret mechanism of sea water intrusion & controlling measures for sea water intrusion.

	Teaching Scheme (In Hours)		Total Credits (L+T+P/2)	Exa		amination S	Scheme	
(11	11100	15)	(E+1+1/2)	Theory Marks		Marks Practical Marks		Total
L	Т	Р	С	CA ESE		CA	ESE	Marks
3	0	2	4	70	30	25	25	150

4. TEACHING AND EXAMINATION SCHEME

Legends: L- Lecture; T- Tutorial/Teacher Guided Student Activity ;P - Practical; C –Credit; ESE-End Semester Examination; PA- Progressive Assessment

Unit	Major Learning Outcomes (in Cognitive Domain)	Topics and Sub-topics
UNIT-I Introduction	 1.1 Explain the sources of Groundwater 1.2 Define various terms related to groundwater 1.3 Define various terms related to aquifer 1.4 Explain Aquifers 1.5 Define various terms related to permeability 1.6 Describe causes of changes in ground Water quantity 	 1.1 Sources of water 1.2 Groundwater scenario of Gujarat and India 1.3 Origin of Groundwater 1.4 Groundwater Characteristics 1.5 Terms related to Ground water Engineering Hydraulic conductivity Specific Retention Transmissibility Coefficient of transmissibility Yield Specific yield Storage coefficient 1.5 Aquifer-Types of aquifer, aquiclude, aquifuge, porosity of aquifer. 1.6 Permeability- Darcy's permeability, coefficient of permeability 1.7 Causes of changes in ground water quantity

5. COURSE CONTENT

UNIT-II Ground water - Survey and Quality	 2.1 Describe various surface and subsurface surveys for ground water exploration 2.2 Describe groundwater Quality parameters 2.3 Describe reasons for ground Water quality degradation 2.4 Explain steps for Improvement of Groundwater quality. 	 2.1 Surface Methods for ground water exploration Esoteric Methods Geomorphologic methods Geological & structural Methods Soil and Micro-Biological Methods Remote Sensing Techniques Surface Geophysical Methods 2.2 Sub surface methods for ground water exploration 2.3 Geophysical survey of ground water - Surface Geophysical techniques -Electric logging & Radioactive logging Method 2.4 Ground water quality Factors affecting ground water quality Classification of ground water quality Types of water quality Physical characteristics of ground water quality Various test for ground water quality
		2.5 Parameters of ground water quality2.6 Groundwater quality degradation

2.5 Parameters of ground water quality		
2.6 Groundwater quality degradation		
2.7 Reasons of groundwater quality		
degradation		
2.8 Effects of changes in ground water		
quality		
2.9 Importance of ground water		
quality		

UNIT-III	3.1 Describe methods	2.1 Concentual introduction Cround water
Artificial	of Artificial	3.1 Conceptual introduction -Ground water
		development
Recharge	recharging	3.2 Stages of ground water development
	5	3.3 Social, economical and overall national
	recharging methods	benefits of ground water development
	3.3 Explain	3.4 Artificial Recharge-Objectives and
	Identification of	Importance
	areas for artificial	3.5 Development of Artificial recharging
	recharge.	3.6 Methods of artificial recharge
	3.4 Explain Artificial	3.7 Suitability , advantages and dis
	recharge structures	advantages of artificial
		recharge methods
		3.8 Identification of areas for
		artificial recharge.
		3.9 Artificial recharge structures
		3.10 Rain water harvesting
UNIT-IV	4.1 Differentiate between	4.1 Introduction
Wells and	wells and tubewells	4.2 Difference between wells and tubewell
Tubewells	4.2 Describe well losses	4.3 Types of wells
	4.3 Describe terms related	- Open wells
	4.4 Explain method of	- Tube wells
	construction of wells	- Shallow, deep and Medium well
	Design the wells	4.4 Benefits of well and tube well
		irrigation
		4.5 Well losses
		4.5 Specific capacity
		4.6 Interference among wells
		4.7 Gravity well
		5
		- Fully penetrating gravity wells
		- Partially penetrating gravity wells
		4.8 Safe yield of well
		4.9 Construction Method of wells
		4.10 Selection of pump sets
		- Plunger pump
		- Jet pump
		- Submersible pump
		- Air lift pump

		 4.11 Design of Tube well Steps, features Structure Size Basis Principles Data required Methods
UNIT-V Sea Water Intrusion	5.1 Explain causes of sea Water intrusion5.2 Describe ill-effects of Sea	5.1 Introduction5.2 Causes of sea water intrusion5.3 Ill-effects of sea water intrusion
	water intrusion 5.3 Explain remedial measures to prevent sea water intrusion a. Explain with	 5.4 Mechanism of sea water intrusion 5.5 Ghyben -Herzberg fresh watersea water Interface 5.6 Remedial measures to control sea water intrusion
	examples sea water intrusion	a. Related examples

6 SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS(Theory)

Unit	Unit Title	Teaching	Distribution of Theory Marks			ks
No.		Hours	R	U	А	Total
			Level	Level	Level	Marks
Ι	Introduction	06	05	05	00	10
II	Ground water	08	06	04	04	14
	Survey and quality					
III	Artificial Recharge	08	05	05	04	14
IV	Wells and Tubewells	12	04	04	10	18
V	Sea water Intrusion	08	04	04	06	14
Total		42	24	22	24	70

Legends: R = Remember, U = Understand, A = Apply and above Level (Bloom's revised taxonomy) Note : This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table

7 SUGGESTED LIST OF EXERCISES/PRACTICAL

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (outcomes in psychomotor and affective domain) so that students are able to acquire the competencies/programme outcomes. Following is the list of practical exercises for guidance.

Note: Here only outcomes mainly in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of Course Outcomes related to affective domain. Thus over all development of Programme Outcomes (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

Sr. No.	Unit No.	Practical/Exercise	Approx. Hrs. Required
1		Drawings and Illustrations	08
	I.II.III.IV ,V	Prepare drawing of Sources of water, Representation of coefficient of storage of ground water Illustration of aquifers Various types of wells Various types of tubewells Artificial recharge structures Mechanism of Sea water intrusion	
2		Rain water harvesting Practical	04
	Ι	Determine the TDS, Electrical Conductivity (ES) of groundwater sample	04
	II	Determine the pH and Hardness of groundwater sample	
3		Solve numerical from given data :	04
	IV	Examples related to well hydraulics	
	V	Examples related to sea water intrusion	
4		Field visit and Report :	08
	I	Visit to Water resources department/Irrigation department for collecting existing groundwater data of the district with respect to importance & necessity of ground water management.	
	II	Visit to various storage works and collect data pertaining to quality.	
	III	Visit to nearby rain water harvesting structure and prepare a report.	

5		Seminar :	04
	I to VII	Select a topic as a seminar and present it using modern teaching aids.	
Total Hours	28		

8 SUGGESTED LIST OF STUDENT ACTIVITIES

- 8.1 Prepare a model/prototype of groundwater recharging structure in the college/ suggested Premises.
 - 8.2 Prepare a model/prototype of tube well in the suggested premises.
 - 8.3 Explore internet to study different issues related to ground water level and Contamination and prepare a report.
 - 8.4 Prepare a report on Remote Sensing Method for ground water Survey
 - 8.5 Motivate owners of some building/housing society being constructed to install ground water recharging system and design system for them.

9 SPECIAL INSTRUCTIONAL STRATEGIES (If Any)

- a. Show video films of sea water intrusion and its effects
- b. Arrange expert lectures of Engineers working in ground water department/geological survey of India.
- c. Present case studies of success and failures of ground water recharge projects being carried out by some NGOs of national/state repute.

10 SUGGESTED LEARNING RESOURCES

A BOOKS

Sr. No.	Title	Author	Publisher
1	Groundwater Hydrology	Raghunath H. M	Willy Eastern Ltd-2000
2	Groundwater Hydrology	Todd D.K.	John Willey & Sons
3	Groundwater Engineering	Abdel-Aziz	Mc-graw Hill book company
4	Ground Water Assessment, Development & Management	K.R. Karanth	Tata Mc Graw Hill Co. Ltd., New Delhi
5	Hydrogeology	K.R. Karanth	Tata Mc Graw Hill Pub Co. Ltd., New Delhi
6	Groundwater Hydrology	Herman Bower	McGraw-Hill,Kogakusha Ltd. Int.Student Edn.1978
7	Related I S Codes		BIS, New Delhi

A. LIST OF RECOMMENDED I.S. PUBLICATIONS:

- B. List of Major Equipment/Materials
 - i. Working models of recharging works.
 - ii. Models of rain water harvesting structures
 - iii. Models of tube well.
 - C List of Software/Learning Websites
 - i. www.nptel.ac.in
 - ii. www.ocw.mit.edu
 - iii. www.ngwa.org/ iv. www.groundwaterinternational.co
- v. www.cgwb.gov.in
- vi. wrmin.nic.in
- vii. www.cwc.nic.in
- viii. www.cgwb.gov.in/Research_and_Development.html

11. PO-COMPETENCY-CO MAPPING:

Semester VI		Ground Water Engineering (Course Code:)						
	POs							
Competency & Course Outcomes	Basic Discipline specific knowledge	Problem Analysis	Design/ Develop ment of Solutions	Engineering tools, Experimenta tion and Testing	Engineering Practices for society, Sustainability and Environment	Project Manage ment	Life- long Learning	
Competency		Take step contamina		ce ground w	ater recharge	e and pro	event its	
Course Outcomes CO1 Interpret different terms related to ground water and process of ground water survey.	2	0	0	2	3	0	2	
CO2 Find suitable method of artificial recharge of ground water for given conditions.	3	2	2	0	3	0	3	
CO3 Design a tube well for given condition.	3	2	2	2	3	0	2	
CO4 Interpret mechanism of sea water intrusion & controlling measures for sea water intrusion.	3	0	0	0	3	0	3	

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

12. COURSE CURRICULUM DEVELOPMENT COMMITTEE <u>GTU Resource Persons</u>

Sr. No.	Name and Designation	Institute	Contact No.	Email
1.	Shri Anil K Popat Senior Lecturer (Civil)	R C Technical Institute, Sola, Ahmedabad	9825443501	anilkpopat@gmail.com
2.	Dr Dipesh H Dalal Senior Lecturer (Civil)	G G P Ahmedabad	9428858913	dhdalal@gmail.com

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021) Semester-VI

Course Title: Construction Quality Control & Monitoring

(Course Code: 4360608)

Diploma program in which this course is offered	Semester in which offered
Civil Engineering	6 th Semester

1.RATIONALE

In rapidly developing countries like India, where infrastructure projects are booming, ensuring quality control and monitoring in construction is crucial for achieving durable and sustainable structures within planned timeframes. For any civil engineering project, regular day-to-day inspections and monitoring play a vital role in maximizing lifespan and minimizing environmental impact. Implementing robust quality control measures can extend the life of civil structures by its design life without significant cost increases. This becomes especially vital considering the depletion of construction resources and the growing emphasis on sustainability. Therefore, for diploma students aspiring to a career in civil engineering, understanding green building concepts and thorough quality control practices is indispensable. Their future roles will likely involve supervisory positions, making them directly responsible for upholding construction quality. Thus, mastering these skills equips them to perform their duties efficiently, effectively, and with environmental responsibility in mind.

2.COMPETENCY

The course content should be taught and implemented with the aim to develop required skills in the students so that they are able to acquire following competency:

• Effectively& efficiently control and supervise Civil construction materials & activities.

3.COURSE OUTCOMES (COs)

The theory should be taught and exercises should be carried out in such a manner that students are able to acquire different learning outcomes in cognitive, psychomotor and affective domain to demonstrate following course outcomes.

i. Apply total quality management in civil construction.

ii. Check the quality in civil construction works. iii.Identify the variations in quality of civil works. iv.Use various standard codes in civil construction

works.

- v. Study various policies and do green audit of the building.
- vi. Design energy efficient buildings.

Teachi (In	ng Sch Hours		Total Credits (L+T/2+P/2)	Examination Scheme					
,	nours	·)	(2,1,2,1,72)	Theory Marks Practical Marks Total			Theory Marks		Total
L	Т	Р	С	CA ESE		СА	ESE	Marks	
3	0	2	4	30*	70	25	25	150	

4. TEACHING AND EXAMINATION SCHEME

(*):Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate the integration of COs, and the remaining 20 marks is the average of 2 tests to be taken during the semester for assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit, CA - Continuous Assessment; ESE -End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the sub-components of the COs. Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. required
1	Prepare &Perform Power Point Presentation highlighting key features of TQM like principles, Aims, Short notes on TQM models, Mantras, building block of TQM, Driving forces & other relevant definitions	I	6*
2	 Prepare Various Quality Check lists of the following Construction materials and activities, a) Masonry b) Plastering c) Flooring d) Concreting of various building elements e) Formwork& Scaffolding f) Steel Fabrication g) Door & Windows h) Plumbing & Drainage i) Water Proofing – Terrace and Bathroom sunk j) External and Internal Painting k) Building materials – Brick, Cement, Sand, Aggregate, Concrete, Steel 	II	6*
3	Conduct field visit to perform quality checks of various construction activities and building materials.	11	4*
4	Solve minimum 8(eight) examples related to the Statistical Quality Control and Statistical Process Control.	III	8*

5	Prepare Power Point Presentation on the important clauses of IS, ISO and NBC	IV	Home* assignment
6	Prepare Power Point Presentation explaining systematic process of green building audit through GRIHA.	V	Home* assignment
7	Prepare Power Point Presentation explaining systematic process of green building audit through IGBC.	V	Home* assignment
8	Conduct physical field visit of nearby green building or virtual/video tour of green building and make comparative report with non-green building.	V	4*

Note

i. More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.

ii. The following are some sample 'Process' and 'Product' related skills (more may be added/deleted depending on the course) that occur in the above listed Practical Exercises of this course required which are embedded in the COs and ultimately the competency.

6.MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment's with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practical in all institutions across the state.

Sr. No.	Equipment Name with Broad Specifications	PrO. No			
1	File papers, Charts & Drawing instruments	2,3 & 4			
2	Computing Devices, Computer	1, 5,6,7,8			
3	Projector	1			

7.AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above-mentioned Cos and PrOs. More could be added to fulfil the development of this competency.

- a) Demonstrate working as a leader/a team member.
- b) Follow safety practices on site.
- c) Follow ethical practices.
- d) Practice environmentally friendly methods and processes. (Environment related)

The ADOs are best developed through the laboratory/field-based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

i. 'Valuing Level' in 1st year ii.

'Organization Level' in 2nd year.

iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY Only the major Underpinning Theory is formulated as higher level UOs of *Revised Bloom's taxonomy* in order for the development of the COs and competency is not missed out by the students and teachers. If required, more such higherlevel UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	Major Learning Outcomes	Topics and Sub-topics
	(in Cognitive Domain)	

Unit-I	1.a Explain features of TQM	1.1 Concept of
Total Quality	1.b Apply various quality	1.1.1 Quality control,
Total Quality Management	checks.	1.1.2 Quality Assurance, 1.1.3
(TQM) in	1.c Distinguish between	Quality management.
Construction	quality control and quality	1.2 Aims of TQM
	assurance.	1.3 Importance of quality
	1.d Explain Quality assurance	1.4 Elements of quality – Quality assurance
	techniques	techniques (inspection, testing, sampling)
	1.e List precision in	1.5 Use of manuals and checklists for quality
	observation in data and	control
	information	1.6 Development and design Concept of TQM
	1.f Explain continuous	1.7 Accuracy and precision in observation,
	improvement and	reading, calibration, testing,
	innovation	measurements, recording of data and
	1.g Describe employee	information etc.
	Involvement and Training.	1.8 Quality Improvement Techniques
		CONQUAS- Construction Quality
		Assessment System
		1.9 Continuous Improvement and Innovation
		1.9.1 Continuous improvement models (e.g.,
		PDCA cycle) in construction 1.9.2 Encouraging innovation and
		improvement within construction
		projects
		1.10 Employee Involvement and Training
		• Importance of employee involvement in
		TQM
		Training programs for construction
		personnel to ensure quality
		1.11 Case Studies and Best Practices Analyzing
		Successful TQM implementations in
		construction
		Learning from real-world examples and
		best practices.
	И	I

Unit-II	2.a Explain Fundamental	2.1 Concept of QA & QC
	Concepts& principles	2.2 Benefits of effective QA & QC
Construction	of quality control (QC)	2.3 Roles & responsibilities of stakeholders.
Quality	and quality assurance	2.4 Check lists for
Control	(QA) in construction,	2.4.1 Masonry
Inspection	including the roles and	2.4.1 Plastering
Program	responsibilities of	2.4.1 Flooring
	various stakeholders.	2.4.1 Concreting of various building
	2.b Apply various	elements
	inspection methods and	2.4.1 Formwork & Scaffolding
	procedures suited for	2.4.1 Steel Fabrication
	different construction	2.4.1 Door & Windows
	materials, systems, and	2.4.1 Plumbing & Drainage
	stages of the project.	2.4.1 Water Proofing – Terrace and
	2.c Make use of skills in	Bathroom sunk
	collecting accurate and	2.4.1 External and Internal Painting
	consistent quality	2.4.1 Building materials – Brick, Cement,
	inspection data,	Sand, Aggregate, Concrete, Steel
	employing statistical	2.5 Orientation of the basic construction QC
	analysis tools for	software.
	quality control, and	2.6 Ethical Standards in Inspections and
	reporting findings	Reporting
	effectively.	2.6.1 Understanding Ethical Principles
	2.d Utilize construction	2.6.2 Objectivity in Inspections
	QC software for data	2.6.3 Accuracy and Completeness in
	management,	Reporting
	reporting, and	
	communication.	
	2.e Develop high ethical	
	standards in	
	inspections and	
	reporting, ensuring	
	objectivity and	
	accuracy.	
	<u>II</u>	

Unit-III Statistical Quality Control& Monitoring	 3.a Describe statistical quality principles and Importance. 3.b Explain variables and attributes related to control charts. 3.c Explain SPC methods 3.d Describe different types of Attributes-sampling plans. 3.e Explain acceptance sampling. 3.f Interpret different type of charts. 	 3.1 Introduction to Statistical Quality Control in Construction 3.1.1 Overview of Statistical Quality Control (SQC) principles 3.1.2 Importance of SQC in building construction 3.2 Quality Measurement: Attributes and Variables 3.3 Statistical Process Control (SPC) Methods 3.4 Control Charts for Attributes: 3.4.1 p-Charts - Proportion Defective 3.4.1 c-Charts - Number of Defects Per Unit 3.5 Control Charts for Variables 3.6 Other Types of Attribute-Sampling Plans 3.7 Acceptance Sampling
Unit-IV Quality Standards	 4.a Explain Importance of Construction Quality Standards 4.b Describe Benefits of Construction Industry Quality Standards 4.c Explain key features of National Building Code of India 2016 (NBC 2016) 4.d Explain key features of ISO Standards for the Construction Industry 	 4.1 Quality standards of various building materials and construction activities. 4.2 Study of Indian Standard Code for Civil Engineering (a) Orientation of the mostly used IS codes as far as the building quality is concerned 4.3 Study of National Building code (NBC 2016) Part 0 to 12 (a) Objectives (b) Basic Content of each part (c) Application 4.4 Study of ISO 9001 - the international standard for quality management 4.5 Study of ISO 14001 - the international standard for environmental management systems 4.6 Study of ISO 50001 - the international standard for health and safety management. 4.8 Study of ISO 44001 - the international standard for collaborative working

T T 1 / T T		
Unit-V	5.a Describe existing Building	5.1 Sustainable buildings & construction
Green	construction scenario in	5.2 Zero net emissions in existing and new
Building&	India	buildings:
Sustainable	5.b Explain - 'Sustainable	5.3 Definition – Green Building, Green
Construction	Buildings' in India.	Construction, Objectives of Green
Development	5.c Explain - Net Zero emission	building
_	buildings	5.4 Green building case studies
	List Government incentives	5.5 Energy conservation act 2001
	for green building, Emerging	5.6 National Water Policy, 2002
	policy, regulatory tools and	5.7 Integrated Energy Policy 2006
	opportunities	5.8 Missions under the national climate action
	5.d Explain in detail – "Building	plan
	Rating systems"	5.9 Energy conservation building code (ECBC-2007)
		5.10 Appliance standards and labeling
		5.11 Building certification: Green
		Rating for Integrated Housing
		Assessment (GRIHA)
		5.12 Leadership in Energy and Environmental Design (LEED)
		5.13 EDGE: green building certification system
		5.14 IGBC rating system
		5.15 GEM rating system
		5.16 Eco Niwas Samhita 2018
		5.17 National Mission on Sustainable Habitat
		(NMSH)

Life Cycle Assessment for Building Products	Assessment 6.b Describe about Efficient life cycles for buildings 6.c Explain Green Building Guide to Reducing Waste 6.d Explain Procedure of Implementing construction waste management (CWM) in India	 6.4 Water efficiency 6.5 Materials efficiency 6.6 Occupant health and safety 6.7 Indoor environmental quality enhancement 6.8 Operations and maintenance optimization 6.9 Waste reduction 6.10 Planning Deconstruction 6.11 Reusing and Repurposing Materials 6.12 End of Life Options for Common Building Materials 6.13 Quantum & composition of Construction & demolition (C&D) waste generation 6.14 Initiatives in promoting C & D waste products by GoI 6.15 Introduction to Guidelines on
		Environmental Management of C&D Wastes

Note: The UOs need to be formulated at the 'Application Level' and above of Revised Bloom's Taxonomy' to accelerate the attainment of the COs and the competency.

T T 1 /			Distribution of Theory Marks					
Unit	Unit Title	Teaching Hours	R Level	U Level	A Level	Total Marks		
Ι	Total Quality Management (TQM) in Construction	7	4	3	4	11		
Π	Construction Quality Control Inspection Program	8	3	5	5	13		
III	Statistical Quality Control & Monitoring	8	4	4	5	13		
IV	Quality Standards	7	4	3	4	11		
V	Green Building & Sustainable Construction Development	7	3	5	5	13		
VI	Life Cycle Assessment for Building Products	5	2	3	4	9		

9. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN

				-	
Total	42	20	23	27	70

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist students in their learning and to teachers to teach and question paper designers/setters to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U, and A) in the question paper may vary slightly from the above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, the following are the suggested studentrelated *co-curricular* activities that can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct the following activities in groups and prepare reports of about 5 pages for each activity, also collect/record physical evidence for their (student's) portfolio which will be useful for their placement interviews:

- a) Undertake micro project
- b) Prepare checklists of various construction activities
- c) Prepare lists of various IS codes with their application domain
- d) Prepare drawings and calculations
- e) Prepare presentations
- f) Prepare Site visit reports
- g) Study various processes for green building audit
- h) Visit the nearby green buildings
- i) Conduct expert lectures of quality experts and green building auditors

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub-M topics.
- b) Guide student(s) in undertaking micro-projects.
- c) *'L' in section No.* 4 means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.11*, teachers need to ensure the creation of opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on environmental and sustainability
- g) Expert lecture by water resource engineer about the emerging scenario of this field or industry experts

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her at the beginning of the semester. In the first four semesters, the micro-project is group-based. However, in the fifth and sixth semesters, it should preferably be **individually** undertaken to build up the skill and confidence in every student to become a problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should **not exceed three.**

The micro-project could be industry application based, internet-based, workshop-based, laboratory-bawd, or field-based. Each macro-project should encompass two or more Cos which are in fact, integrations of PrOs, UOs and ADOs. Each student will have to maintain a date work diary consisting of individual contributions to the project work and given seminar presentation of it before submission. The total Duration of the micro-project work should not be less than 16 [sixteen] student engagement hours during the course. The student ought to submit a micro-project by the end the semester to develop the industry-oriented Cos.

- 1. Site Visit:
- a. Choose a project showcasing diverse quality control methods: Opt for a site with construction elements like concrete pouring, foundation inspection, material testing, and steel structure assembly.
- b. Pre-brief students: Prepare specific questions and areas of focus for students to observe during the visit. This ensures active engagement and targeted learning.
- c. Post-visit discussion: Facilitate a panel discussion with project engineers or quality control supervisors to delve deeper into challenges, successes, and future trends in quality control.
- 2. Video Films:
- a. Go beyond basic material testing: Showcase innovative techniques like drone-based inspection, thermal imaging for detecting thermal bridges, and non-destructive testing methods.
- b. Curate diverse materials: Include videos testing not just basic materials like concrete and steel, but also specialized elements like waterproofing membranes, geosynthetics, and prefabricated components.
- c. Interactive viewing: Pause at key points to ask students questions, solicit predictions, and highlight important details they might miss.
- 3. Expert Lectures:
- a. Focus on specific areas: Invite experts specializing in crucial aspects like soil testing, concrete mix design, quality control for sustainable materials, or digital tools for quality monitoring.
- b. Interactive format: Encourage Q&A sessions, panel discussions, and student case presentations to ensure a dynamic learning experience.
- c. Case study integration: Ask the experts to discuss real-world projects they've handled, highlighting both successes and lessons learned from quality control failures.
- 4. Case Studies:
- a. Select diverse failures: Show examples of structural collapses, material degradation, fire safety issues, and environmental impacts caused by quality control problems.

- b. Emphasize root causes: Go beyond just showcasing failures. Analyze the technical and human factors that led to them, encouraging critical thinking and risk identification.
- c. Integrate with other activities: Use case studies as discussion points after site visits, expert lectures, or video screenings to solidify learning and connect theory with practical application.

13. SUGGESTEDLEARNINGRESOURCES

A. BOOKS:

No.	TITLE	AUTHOR	PUBLISHER
1	Total Quality Management	G.Kanji	Springer Science & Business Media
2	Fundamentals of Quality Control and Improvement	Amitva Mitra	Wiley India Private Limited
3	Construction Project management, Theory & Practice	Kumar Neeraj Jha	Pearson Education India
4	Project Planning with PERT and CPM	B. C. Punmia, K. K. Khandelwal	Laxmi Publications
5	Construction Planning and Management	P. S. Gehlot and B. M. Dhir	Wiley Eastern Ltd.
6	Construction of Structures and Management of Works	S. C. Rangwala	Charotar Publications
7	Manual on Quality Control		Gujarat Engineering Research Institute
8	Ambuja Technical Literature Series		Ambuja Cements
9	Construction Project Management	K. K. Chitkara	Tata McGraw-Hill Education
10	NationalBuildingCode,ISO900	00/14000andother sta	undards

14. Learning Website:

List of Readings for each Chapter including and not limited to

- i. www.nptel.ac.in
- ii. http://ndrfandcd.gov.in/Cms/NATIONALBUILDINGCODE.aspx
- iii. http://en.wikipedia.org/wiki/Green_building_in_India iv. https://edge.gbci.org/
- v. https://www.teriin.org/
- vi. https://www.cseindia.org/greening-our-buildings-what-is-the-government-doing-2731
- vii. https://igbc.in/
- viii. https://www.niua.org/csc/assets/pdf/key-documents/phase-2/CSCAF-2.0-
- ix. https://www.niua.org/csc/assets/pdf/CSCAF_2_Booklet.pdf
- x. https://heyzine.com/flip-book/31ddf6adfe.html#page/1
- xi. Climate Smart Cities Assessment 2.0. Process Video
- xii. https://www.youtube.com/watch?v=WHq7ZTtPrsk
- xiii. https://edgebuildings.com/wp-content/uploads/2021/11/IFC0060-EDGEBrochure-India-2021-11-03-FIN.pdf xiv.

https://gbci.org/press-kit-edge

- xv. https://www.grihaindia.org/about-griha
- xvi. https://www.youtube.com/watch?v=ugGPJ0QYs1A
- xvii. https://www.beeindia.gov.in/sites/default/files/ECBC_BOOK_Web.pdf
- xviii. https://www.cseindia.org/india-manages-to-recover-and-recycle-only-about-1-per-cent-ofitsconstruction-and-demolition-10326
- xix. https://www.indiawaterportal.org/articles/implementing-construction-waste-managementindia
- xx. https://cpcb.nic.in/openpdffile.php?id=TGF0ZXN0RmlsZS8xNTlfMTQ5NTQ0NjM5N19tZWRp YXBob3RvMTkyLnBkZg xxi.

https://cpcb.nic.in/openpdffile.php?id=TGF0ZXN0RmlsZS8xNTlfMTQ5NTQ0NjM5N19tZWRp YXBob3RvMTkyLnBkZg xxii. https://www.bis.gov.in/wp-

content/uploads/2022/08/Booklet-Guide-for-Using-NBC-

2016.pdf xxiii. https://www.bis.gov.in/standards/technical-

department/national-building-code/ xxiv.

https://law.resource.org/pub/in/bis/S03/is.sp.21.2005.pdf

xxv. https://www.grihaindia.org/case-study xxvi. https://igbc.in/igbc-rating-systems.php

15. PO-COMPETENCY-CO MAPPING

Semester IV	Con	Construction Quality Control & Monitoring (Course Code: 4350602)								
		POs and PSOs								
	PO 1 PO 2 PO 3 Design/ PO 4 Engineering PO 5 PO 6 Project PO 7							PSO	PSO	PSO
	Basic &	Problem	development	Tools,	Engineering	Management	Life-long	1	2	3
	Discipline	Analysis	of solutions	Experimentation	practices for		learning			
Competency	cy specific &Testing society,									
& Course	knowledge				sustainability					
Outcomes					environment					

Competency	Impart the fundamental skills and knowledge necessary to comprehend the practice of Construction Quality Control & Monitoring								
CO a.	3	3 2 3 3 3 .							
Total Quality Management (TQM) in Construction									
CO b. Construction Quality Control Inspection Program	3	2	-	2	3	3	3		
CO c. Statistical Quality Control & Monitoring	-	2	-	2	-3	2	3		
CO d. Quality Standards		2	1	2	1	2	3		
CO e. Green Building & Sustainable Construction Development	1		3	3	3	2	3		
CO f. Life Cycle Assessment for Building Products	1		3	2	2	2	3		

Legend: '3' for high, '2' for medium, '1' for low or '-' for the relevant correlation of each competency, CO, with PO/ PSO

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE <u>GTU Resource Persons</u>

S. No.	Name and Designation	Institute	Contact No.	Email
-----------	----------------------	-----------	-------------	-------

1	Shri. Rahul S. Oza	Government Polytechnic, Jamnagar	9426994979	rahuloza.engg@gmail.com
2	Shri. Rajiv B. Dabhi	Government Polytechnic, Jamnagar	9879669517	rajeev.dabhi@gmail.com

GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021)

VI – Semester Course Title: Advance Design of Structures (Course Code: 4360609)

Diploma program in which this course is offered	Semester in which offered
Civil Engineering	Sixth Semester

1. RATIONALE

After learning advance analysis of structures in fifth semester, this elective subject is introduced in 6th semester for those students willing to excel in the structural engineering field. This subject incorporates in depth knowhow for design of structural elements pertaining to Steel structures and Reinforced Concrete structures. In Steel structures, design of Tension member, Compression member and flexural member is included. Slab base foundation for steel column and under advance RCC design topics i.e. Doubly reinforced beam, T - Beam and Continuous slab are also incorporated. After learning this subject, diploma students will develop enhanced , in-depth, understanding of analysis and design of the structural members in the field of structural engineering and will be able to apply their knowledge ,design and analytical skills in the construction industry.

2. COMPETENCY

The purpose of this course is to help the student to attain the following industry identified competency through various teaching learning experiences:

• Analyse and Design important structural elemental members of R.C.C. and Steel structures.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with the identified competency are to be developed in the student for the achievement of the following COs:

- a) Analyse and Design Tension and Compression members of Truss .
- b) Design axially loaded steel column and slab base foundation.
- c) Design Laterally restrained steel beam and purlin.
- d) Analyse RC T-Beam & Doubly reinforced beam and design Doubly Reinforced rectangular beam.
- e) Design a three span one way continuous RC slab.

Teach	ing Scl	neme	Total Credits	Examination Scheme				
(1	n Hour	s)	(L+T+P/2)	Theory Marks Practical Marks			Total	
L	Т	Р	С	СА	ESE	CA	ESE	Marks
3	0	2	4	30*	70	25	25	150

4. TEACHING AND EXAMINATION SCHEME

(*):Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

Note: Subject related Indian Standard Codes (1) IS 456-2000 (2) IS 800-2007 (3) SP-16 Design Aid to IS-456 (4) SP-6 Handbook for Steel Structures will be allowed during Examinations.

5. SUGGESTED PRACTICAL EXERCISES

The following practical outcomes (PrOs) are the subcomponents of the COs. Some of the **PrOs** marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

Sr. No.	Practical Outcomes (PrOs)	Unit No.	Approx. Hrs. Required
1	Analyse and Design Axially Loaded Tension Member made up of Angle Section Specify Equal or Unequal, ISA or 2ISA (1-Problem Each)	I	02*
2	Analyse and Design Strut made up of Angle Section (1-Problem Each)	II	02 *
3	Design Axially Loaded Steel Column (One ISHB Section) and Slab Base Foundation for that. (1-Problem)	II, IV	04*
4	Design laterally restrained steel beam and purlin.(1-Problem Each)		02*
5	Draw longitudinal and sectional view designed Tension Member, Compression member and Laterally restrained beam. Draw Plan and c/s Elevation of Slab Base Foundation under column made up of H section. Sheet No:01 – A2 Size	I, II, III, IV	02*
6	Analyse and Design Doubly reinforced rectagular beam.(1- Problem Each)	V	04*
7	Analyse T-Beam (1-Problem)	VI	02*
8	Design three span one way continuous slab (1-Problem)	VII	04 *
9	Draw longitudinal and sectional view of designed doubly reinforced beam. Draw designed three span One Way Continuous Slab in Plan and in Longitudinal cross section Sheet No:02 – A2 Size	VI,VII	02*
10	Hands on Practice session/ Interactive Seminar for design, Analysis of Structural components (steel and/or RCC) on relevant software	I TO VII	04 *
	Total hours		28 Hrs.

<u>Note</u>

- *i.* More **Practical Exercises** can be designed and offered by the respective course teacher to develop the industry relevant skills/outcomes to match the COs. The above table is only a suggestive list.
- **ii.** The following are some **sample** 'Process' and 'Product' related skills(more may be added/deleted depending on the course) that occur in the above listed **Practical Exercises** of this course required which are embedded in the COs and ultimately the competency.

Sr. No.	Sample Performance Indicators for the PrOs	Weightage in %
1	Interpretation of given data and its understanding.	10
2	Selection of sketches/Process of designing of the given	40
	structural components using relevant I.S.codes and	
	preparing of report of site visit	
3	Presentation of sketches in sketchbook, neatness and	20
	cleanliness of sheets and writing reports.	
4	Individual work, work as a team-member	15
5	Completion and submission of work in time.	15
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

This major equipment with broad specifications for the PrOs is a guide to procure them by the administrators to usher in uniformity of practicals in all institutions across the state.

Sr. No.	Drawing tools and other design aids (for all PrOs)
1	Drawing boards and drawing instruments.
2	Scientific calculator and all relevant IS codes.
3	Computers and Printers.
4	Available CAD software(Not mandatory)

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned COs and PrOs. More could be added to fulfill the development of this competency.

- a) Work as a leader/a team member.
- b) Follow safety practices while using equipment.
- c) Realize importance of green energy. (Environment related)

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

The major underpinning theory is given below based on the higher level UOs of *Revised Bloom's taxonomy* that are formulated for development of the COs and competency. If required, more such higher level UOs could be included by the course teacher to focus on attainment of COs and competency.

Unit	unit Outcomes (UOs)	Topics and Sub-topics
	(4 to 6 UOs at different levels)	ropies and bub topies
Unit – I Tension Member	 1a. Suggest the type of steel section to be used as tension member for given data. 1b. Compute the load carrying capacity of given tension member with given condition. 1c. Design given tension member for given data and condition. 	 1.1 Types of sections used as Tension Members in Steel Structures. 1.2 Design strength of Tension Member governed by Yielding, rupture of critical section and Block shear in Angle section according to provision of IS: 800-2007 1.3 Analysis and Design of Axially loaded tension members - Single and Double angle section with Bolted and welded connections. 1.4 Numerical of Analysis and design of tension members for single and double angle sections with bolted and welded connections.
Unit – II Compression Member (Strut & Column)	 2a. Suggest the type of steel section to be used as compression member for given data. 2b. Compute the load carrying capacity of given compression member with given end conditions. 2c. Design the compression member for given data and condition. 	 2.1 Type of sections to be used as compression members in steel structures. Calculation of effective length, radius of gyration, slenderness ratio and its permissible value as per IS:800-2007. 2.2 Cross section classification, Buckling class, Imperfection factors as per IS:800-2007 2.3 Design compressive strength of (i) Axially loaded compression members (ii) Single angle struts (iii) Double angle struts as per IS:800-2007 2.4 Numerical of Analysis and design of compression members for single angle section, double angle section, with bolted and welded connections. 2.5 Numericals for Analysis and Design of Column (made up of single H section i.e. ISMB,ISHB only No Built Up Section)
Unit– III Laterally Restrained Beam and Purlin	 3a. Design laterally restrained simply supported beams(only ISHB or ISMB 3b. Design Purlin made up of Unequal Angle Section 	 3.1 Main Beam , Secondary Beam , Standard I Sections , Laterally restrained and unrestrained beam (only) symmetrically loaded with UDL and/or point load. 3.2 Plastic Section Modulus – Annexure –H , IS-800-2007 , Section classification as per Table 2 – IS-800-2007 , Shear buckling , Shear Strength and Bending

Unit– IV Slab Base Foundation	 4a. Identify different types of column bases foundation. 4b. Design of Slab Base Foundation for Axially Loaded Column made up of Indian Standard Heavy Beam Section 	4.2	Strength of Section as per Cl. 8.4.1 and Cl. 8.2.1.2 of IS-800-2007, Deflection as per Table-6 of IS-800-2007, Shear Leg Effect, Web Crippling Schematic comparison of various Slab Bases for Axially loaded columns. Procedure to design Slab Base Foundation for axially loaded column made up of ISHB Section with bolted connection only. Numerical to design slab base foundation for given data.
Unit– V Doubly Reinforced Beam	 5a. Differentiate types of RC beams. 5b. Calculate moment of resistance of doubly reinforced beam. 5c. Design a Rectangular Doubly reinforced beam. 5d. Draw reinforcement detailing for the designed doubly reinforced beam section as per IS provision. 	5.2 5.3	Requirements and conditions for providing doubly reinforced sections. Stress diagram for doubly reinforced beam. Stress in compression reinforcement (f_{sc}) in doubly reinforced beams for different values of d'/d ratio. Analysis and design of doubly reinforced section using IS:456-2000 method, SP:16 table method and SP: 16 chart method. Numerical of Moment of resistance and Area of steel (tension and compression) for doubly reinforced beam.
Unit– VI	6a. Identify importance of reinforced concrete flanged beams.	6.1	Concept of flanged beam-T-beam & L- beam. Requirement and advantage of T- beam. Effective width of flange.
T-Beam	6b. Analyze T-beam for Flexure.		Conditions for the beam to act as T-Beam i.e. (i) Neutral axis lies in flange[$X_u < D_f$] (ii) Neutral axis lies in web [$X_u > D_f$] Stress strain diagram of T- beam. Numerical to find Limiting Moment of Resistance of Tee Beam using IS:456- 2000 and SP-16.
Unit– VII	7a. Identify conditions to use one	7.1	Definition and requirement to use one
One-Way Continuous Slab	 way continuous slab. 7b. Design one way continuous slab as per given data and condition. 7c. Draw reinforcement details for the designed one way continuous slab as per IS 	7.2	way continuous slab. IS 456:2000 provisions for three span one way Continuous Slab. Various coefficients of Bending moment and shear force for dead load and imposed load. Numerical to design three span one way
	provision.	1.3	continuous slab only.

Unit	Unit Title	Teaching	Distri	bution o	f Theory	Marks
No.		Hours	R	U	Α	Total
			Level	Level	Level	Marks
1	Tension Member	08	02	04	06	12
Ш	Compression Member (Strut &	10	02	04	08	14
	Column)					
	Laterally Restrained Beam and	06	02	04	04	10
	Purlin					
IV	Slabs Base Foundation	04	02	02	02	06
V	Doubly Reinforced Beam	05	02	04	04	10
VI	T-Beam	04	02	02	04	08
VII	One-Way Continuous Slab	05	02	04	04	10
	Total	42	14	24	32	70

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy) <u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions to assess the attainment of the UOs. The actual distribution of marks at different taxonomy levels (of R, U and A) in the question paper may slightly vary from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated **co-curricular** activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- a) Identify different situations with photographs of steel structural members where tensile force is predominant in the field.(bridge, Railway station)
- b) Identify different situations with photographs of steel structural members connection (Bolted & welded connection)
- c) Identify different situations with photographs of steel structural members where compressive force is predominant in the field. (Suspension bridge, Railway bridge)
- d) Identify different situations with photographs of RCC Structural components such as column ,doubly beams , continuous slabs etc..
- e) List out various softwares available for steel and RCC design and submit a review report.
- f) Use of computer program (software or excel worksheets) to compare the results of design and analysis problems solved manually

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/subtopics.
- b) Guide student(s) in undertaking micro-projects.

- c) 'L' in section No. 4 means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20% of the topics/sub-topics** which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to *section No.9*, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- f) Guide students on how to address issues on environment and sustainability.
- g) Guide students for using data manuals.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-projects are group-based (group of 3 to 5). However, **in the fifth and sixth semesters**, the number of students in the group should **not exceed three**.

The micro-project could be field application based, internet-based, workshop-based, laboratory-based or theory based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain a dated work diary consisting of individual contributions in the project work and give a seminar presentation of it before submission. The duration of the micro-project should be about **14-16** *(fourteen to sixteen) student engagement hours* during the course. The students ought to submit micro-project by the end of the semester to develop the industry-oriented COs. A suggestive list of micro-projects is given here. This has to match the competency and the COs. Similar micro-projects could be added by the concerned course teacher:

- a) Compare the design and analysis done manually with computer software or excel worksheets for at least one of the list below
 - a. Steel Design and analysis for Axially loaded Tension member, Axially loaded compression member, Simply Supported laterally restrained beams, Purlins and Slab base Foundation.
 - b. RCC Design and analysis of Doubly reinforced rectangular beam, 3 span one way continuous slab,T beam.
- b) Prepare a spreadsheet computer program to design at least one of the following
 - a. Steel Design for Axially loaded Tension member, Axially loaded compression member, Simply Supported laterally restrained beams, Purlins and Slab base Foundation.
 - b. RCC Design of Doubly reinforced rectangular beam, 3 span one way continuous slab.
- c) Prepare a spreadsheet computer program for at least one of the following
 - a. Steel Design for Axially loaded Tension member, Axially loaded compression member, Simply Supported laterally restrained beams, Purlins and Slab base Foundation.
 - b. Doubly reinforced rectangular beam, 3 span one way continuous slab.

d) Analyse and design a steel roof truss or a residential block building with structural engineering software.

13. SUGGESTED LEARNING RESOURCES

Sr. No.	Title of Book	Author	Publication with place, year and ISBN
1	Design of Reinforced	N Krishna Raju	CBS Publishers & Distribution
	Concrete Structures		Pvt. Ltd. NewDelhi
			ISBN: 9789385915369
2	Design of Reinforced	N Subramanian	Oxford Publisher
	Concrete Structures		ISBN: 0198086946
3	Reinforced Concrete Vol.I	Dr.H.J.Shah	Charotar Publication
			ISBN: 9789385039478
4	Design of Steel Structures By	S.S.Bhavikatti	Dreamtech press
	Limit State Method as per		New Delhi
	IS:800-2007		ISBN:9389307058
5	Limit State design of Steel	S.K.Duggal	Mc Graw Hill
	structures		ISBN: 9353164877
6	Limit State design of Steel	S.Kanthimathinathan	Dreamtech press New Delhi
	structures As per IS:800-2007		ISBN:9389447577
7	IS:456-2000- Plain and	BIS, New Delhi	BIS, New Delhi
	Reinforced concrete code of		
	practice.		
8	IS:800-2007-Indian Standard	BIS, New Delhi	BIS, New Delhi
	Code of practice for use of		
	structural steel in general		
9	building construction.	DIC New Delhi	DIC New Delki
9	SP:16-Design Aids for reinforced concrete to IS:456	BIS, New Delhi	BIS, New Delhi
10	SP:6-Handbook for Structural	BIS, New Delhi	BIS, New Delhi
10	Engineers(Structural Steel		
	Sections)		
11	SP:34-Handbook on Concrete	BIS, New Delhi	BIS, New Delhi
	Reinforcement and Detailing		

14. SOFTWARE/LEARNING WEBSITES

- a) NPTEL Course :-Reinforced Cement Concrete by IIT, Kharagpur https://archive.nptel.ac.in/courses/105/105/105105105/
- b) NPTEL Video series for Steel design by IIT, Kharagpur https://archive.nptel.ac.in/courses/105/105/105105162/

15. PO-COMPETENCY-CO MAPPING

Semester VI	Advance Analysis of Structures (Course Code: 4360609)							
Competency	PO 1 Basic & Discipline	Problem	PO 3 Design/ development	Pos PO 4 Engineering Tools,	Engineering	PO 6 Project Management	PO 7 Life-long	
& Course Outcomes	specific knowledge	Analysis	of solutions	Experimentation & Testing	practices for society, sustainability & environment		learning	
<u>Competency</u>	<u>Analyse</u> a	<u>Analyse</u> and Design important structural elemental members of R.C.C. and Steel structures.						
Course Outcomes COa) Analyse and Design Tension and Compressio n members of Truss	2	3	3	2	2	2	2	
COB) Design Axially loaded steel column and slab base foundation.	2	3	3	2	2	2	2	
COC) Design laterally restrained steel beam and purlin.	2	3	3	2	2	2	2	
Cod) Analyse RC T-beam and Doubly reinforced beam and Design doubly reinforced rectangular beam	2	3	3	2	2	2	2	
COe)Design a three span one way continuous RC slab.	2	3	3	2	2	2	2	

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

Sr. No.	Name and Designation	Institute	Contact No.	Email
1.	Shri P .V. Rayjada, HOD Applied Mechanics	L.E. College (Diploma), Morbi	9824281646	<u>satwikpr@gmail.com</u>
2.	Shri J. H. Gabra, HOD Applied Mechanics	Dr. S.& S.S. Gandhy college of engineering and Technology ,Surat	9427207933	gabrajh@rocketmail.com
3.	Dr D. N. Parekh, Sr Lecturer, Applied Mechanics	Sir BPTI, Bhavnagar	9428408308	dnparekh@gmail.com
4.	Ms. Bhruguli C Shah Sr Lecturer, Applied Mechanics	R.C.T.I., Ahmedabad	9099076555	<u>bhruguli@gmail.com</u>